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Abstract
Dynamic information flow tracking (also known as taint

tracking) is an appealing approach to combat various se-
curity attacks. However, the runtime performance can be
severely degraded without efficient hardware support.

This paper observes that information flow tracking can
be efficiently emulated using deferred exception tracking in
microprocessors supporting speculative execution. Based
on the observation, we propose SHIFT, a low-overhead,
software-based dynamic information flow tracking system
to detect a wide range of attacks. The key idea is to treat
tainted state (describing untrusted data) as speculative state
(describing deferred exceptions). SHIFT leverages existing
architectural support for speculative execution to automat-
ically propagate tainted state in registers and needs only to
maintain tainted state in memory (using a bitmap), which
results in significant performance advantages. Moreover, by
decoupling mechanisms for taint tracking from the assign-
ments of security policies, SHIFT can detect a wide range
of security exploits including high-level semantic attacks.

By leveraging existing speculative hardware, we have
implemented a prototype system on Itanium using GCC.
A security assessment shows that SHIFT can detect both
low-level memory corruption exploits as well as high-level
semantic attacks with no known false positives. Perfor-
mance measurements show that SHIFT incurs about 1%
overhead for server applications. The performance slow-
down for SPEC-INT2000 is 2.81X and 2.27X for tracking
at byte-level and word-level respectively. An investigation
also shows that some minor architectural improvements to
Itanium, that is, adding three simple instructions can fur-
ther reduce the performance slowdown down to 2.32X and
1.8X for byte-level and word-level tracking, respectively.

1 Introduction

1.1 Motivation

Software security has become a severe economic and so-
cial problem [1, 2]. Apart from typical low-level attacks
such as buffer overrun, high-level semantic attacks that sub-
vert legitimate uses of resources have emerged recently as a
major security threat. For example, high-level attacks such
as cross-site scripting and SQL injection were ranked the
top 2 in reported vulnerabilities through 2005 to 2006 [4].
One common feature of these viruses and attacks is that
they often hijack the normal control flow of software and/or
cause illegitimate uses of untrusted data.

One effective way to combat these attacks is to dynam-
ically track the information (both control and data) flow to
defend against malicious uses of tainted data [24, 18, 22, 8].
Generally, these approaches mark (taint) data from un-
trusted sources (e.g., network), track it during program ex-
ecution, and detect unsafe usages of the tainted data (e.g.,
being executed or used as system call arguments). Com-
pared to other techniques, dynamic information flow track-
ing (DIFT) can provide precise information (e.g., flow of
tainted data) to detect and reason about various attacks, even
unknown ones, with few or no false positives. Moreover,
the results of such reasoning could be used as feedback to
generate accurate intrusion prevention signatures [6, 18].

A number of systems have been built to employ DIFT to
detect various attacks. Previous systems can be classified
into two categories: software-based systems [22, 18, 27]
that utilize a compiler or a dynamic binary translator to
instrument application code and detect information flow
anomalies; and hardware-based systems [25, 24, 7, 8, 26]
that provide architectural enhancements to improve the ef-
ficiency of information flow tracking. Software-based ap-



proaches can assign various policies to detect a wide range
of attacks including high-level semantic attacks. However,
they come with a heavy performance slowdown ranging
from 4.6X to 37X [22, 18]. Hardware-based systems are
more efficient but they require non-trivial changes to core
processor architectures.

1.2 Our Contribution

In this paper, we propose a low-overhead scheme, called
SHIFT 1, that leverages existing modern architectural fea-
tures, such as deferred exception, to support dynamic infor-
mation flow tracking. It can detect a wide range of security
exploits including high-level semantic attacks with a rela-
tively small performance slowdown.

Speculative execution [14, 10] is an efficient technique
to improve program performance. One important issue in
speculative execution is precisely detecting and handling
exceptions, to ensure the correctness of program execution.
To support control speculation [16, 11, 9], researchers ex-
tend each general-purpose register with a deferred excep-
tion token to track exceptions (we call it a speculative state)
during speculative execution. The token is automatically
propagated along program execution path. We observe that
dynamic information flow tracking or taint tracking is simi-
lar to speculative state tracking. In taint tracking, the tainted
information is usually maintained through a tag and the tag
is also required to be propagated during program execution.
Thus, it is conceivable that existing speculative hardware
support could be useful for information flow tracking.

Built on the deferred exception mechanism, we propose
a DIFT scheme that hardware provides mechanisms to track
information in internal processors, while software assigns
policies and utilizes the mechanisms to accelerate DIFT. We
have implemented a prototype system based on GCC to pro-
tect applications running on Itanium. The system relies on
the processor to automatically propagate tainted state (i.e.,
speculative state) during execution. SHIFT uses a bitmap
to keep the tainted state of data in memory, and instruments
each load and store from/to memory to maintain the consis-
tency of the taint state. Security policies can be assigned by
configuring the instrumentation compiler.

We have measured several real-world security exploits
against SHIFT. The measurements show that SHIFT can
detect all these attacks with no known false positives. Per-
formance measurements indicate SHIFT incurs about 1%
performance overhead for server applications. The av-
erage slowdown 2 for SPEC-INT2000 is 2.81X (ranging
from 1.32X to 4.73X) and 2.27X (ranging from 1.34X
to 3.80X) for tracking at byte-level and word3-level re-

1SHIFT is short for speculative hardware based information flow
tracking.

2Performance slowdown is calculated by dividing the new execution
time with the original execution time

3In this paper, a word refers to 8 bytes memory.

spectively, which are to date the best performance results
among the real-world DIFT systems. We also demonstrate
that some simple architectural improvements to Itanium can
reduce the performance slowdown notably.

In summary, this paper makes the following contribu-
tions:

• We propose a novel approach that leverages existing
speculative hardware for dynamic information flow
tracking. The approach decouples detecting mecha-
nisms from security policy assignments. Hence, it
enjoys the advantages of both hardware-based (effi-
ciency) and software-based (flexibility) approaches.

• We have implemented a working prototype for Itanium
using GCC. Security measurements show that SHIFT
is effective in defeating real-world attacks. Perfor-
mance measurements indicate that SHIFT incurs neg-
ligible performance for Apache-webserver and modest
slowdown for SPEC-INT2000.

The rest of this paper is organized as follows. In sec-
tion 2, we provide some background information on spec-
ulative execution and the hardware support for track de-
ferred exceptions. Section 3 presents the design of SHIFT
and section 4 describes the implementation issues for Ita-
nium processors and GCC. Then, section 5 evaluates the
detection ability of SHIFT using a set of real-world secu-
rity attacks. Section 6 presents a performance evaluation
of SHIFT using Apache-webserver and the SPEC-INT2000
benchmarks. Finally, we discuss the related work and con-
clude the paper with a brief note on our future work.

2 Background
As SHIFT reuses hardware support for speculative exe-

cution for dynamic information flow tracking, this section
briefly describes some background information on both of
them.

2.1 Dynamic Information Flow Tracking
Figure 1 gives a real-world buffer-overflow vulnerability

in qwik-smtpd 0.3 and shows how DIFT defeats the exploit.
As shown in the figure, the server checks the clientIP to
prohibit relaying a mail not from the localhost. However,
as the server doesn’t check the string length of arg2 in line
5, an attacker may supply a long input to overwrite localIP
to clientIP. Afterwards, the attacker can relay any e-mail
through the server.

A program built with DIFT defeats the exploit by mark-
ing the user input (e.g., arg2) as tainted (by setting the cor-
responding tags) and propagating the tags through program
execution according to control or data dependency. Hence,
when the tainted data (arg2) bypasses the boundary of clien-
tHELO and overwrites localIP, the program also marks lo-
calIP as tainted. Finally, the program detects the security
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Figure 1: A buffer overflow vulnerability in qwik-smtpd 0.3 and
how DIFT defeats it.

exploit when tainted data is used in an unsafe way. In this
example, by setting a policy that disallows tainted data to
be compared and thus alter the control flow, the exploit is
detected.

2.2 Speculative Execution and Hardware
Support

Speculative program execution is a combination of hard-
ware and software techniques to aggressively execute code
as early as possible to hide memory latency, avoid memory
aliasing or improve code scheduling. There are typically
two types of speculations: control speculation, which opti-
mistically executes code before knowing whether the code
should be executed or not in a control path; and data spec-
ulation, which executes code depending on likely correct
operand values. Currently, SHIFT leverages only control
speculation to assist information flow tracking.

Figure 2 gives an example of control speculation. If the
compiler knows that the branch condition (i.e.,“cond ”) is
likely to be true (e.g., from profiling), the load instruction
can be moved up to be speculatively executed (using ld.s)
as early as possible. Since the load operation is moved
away from the subsequent store instruction, its execution
can overlap with others to hide load latency. The overall
critical path can thus be shortened.

However, speculatively executed instructions may cause
exceptions, which may not occur during the normal pro-
gram execution. For example, r13 may contain an invalid
address when cond is not true. In such a case, the excep-
tion should not occur since the instruction “ld.s r14 = [r13]”
needs not be executed. To address this issue, researchers
have proposed deferred exceptions [16, 11] for precise ex-
ception handling during speculative execution. There are
generally four extensions to the processor architecture: (1)
Each general purposed register is extended with an excep-
tion token to record possible exception. Special instructions

ld8.s r14 = [r13];

and r15 = r14,8 ;

...

if(cond) {

chk.s r15, recovery;

Next:

st8 [sp] = r15;

}

...

recovery:

ld8 r14 = [r13];

and r15 = r14,8;

br.cond next;

Optimized Code

if(cond) {

ld8 r14 = [r13]

and r15 = r14, 8

st8 [sp] = r15

}

...

Original Code

Figure 2: An example code of control speculation: the ld instruc-
tion is speculatively moved up so that its execution can overlap
with others. An instruction checking exceptions (chk.s) is inserted
in its initial location to catch speculation failure and jump to the
recovery code.

are provided to test the token in registers. (2) Instructions
are categorized as either speculative or non-speculative.
Possible exceptions caused by speculative instructions are
recorded instead of being thrown out immediately. (3) The
processor pipeline is modified to propagate the exception
token along program execution path. (4) Special load/store
instructions are provided to reload/save exception tokens as
well as the data in a register.

If an exception occurs when an instruction is specula-
tively executed, the exception token in the target register
will be set instead of signaling the exception. The token
in that register will then be propagated along program ex-
ecution path in an OR-based fashion, that is, if one source
register is with an exception token, the token in the target
register will be set. In the example above, if an exception
occurs when “ld r14 = [r13]” is executed, the exception to-
ken in r14 is set. The token is then propagated to r15 and
tested by the chk.s instruction, which examines the excep-
tion token in r15 and redirect the execution to the recovery
code.

Note that, registers with exception tokens cannot be used
by non-speculative operations which may cause possible
side effects such as altering control flows and memory oper-
ations, to prevent bringing irreversible state. Improper uses
of the tokens will trigger an exception.

3 SHIFT Design: From Speculation to DIFT
From the previous section, it can be observed that dy-

namic information flow tracking (DIFT) and deferred ex-
ception propagation (DEP) are similar in nature: DIFT
tracks tags describing untrusted data, while DEP tracks
tokes describing deferred exceptions. Both need to prop-
agate the tags during program execution. They also need
some mechanisms to detect possible violations. Because
of their similarity, DIFT can be implemented mostly in the



same way as DEP if we simply treat tags describing tainted
data as deferred exceptions.

Built on DEP, we consider a DIFT scheme that hard-
ware provides mechanisms to track information in inter-
nal processors, while software assigns policies and utilizes
the mechanisms to accelerate DIFT. Hence, security poli-
cies can be cleanly separated from the tracking and detec-
tion mechanisms. This allows developers to implement both
high-level and low-level security policies. Existing com-
modity hardware components can be reused instead of man-
dating design changes to the core processor components or
memory systems.

3.1 Tracking Tags within Processors

SHIFT makes novel uses of the deferred exception
mechanisms in control speculation to assist DIFT. Specif-
ically, SHIFT reuses the exception token to represent taint
tag for data in registers. To support DIFT, we need to extend
DEP to include:

Setting and clearing taint tags. In DIFT, setting and
clearing taint tags happen frequently, to contaminate and
purify data according to program semantics. For example,
when loading tainted data, the taint tag in the target regis-
ter should be set accordingly. However, such instructions
are absent in the typical ISA supporting DEP. It is rather
straightforward to add such instructions without touching
the internal processor pipelines.

Taint-aware compare instructions. To survive spec-
ulative failure, compare instructions in DEP usually reset
the flags for both branch targets when the branch condition
contains an exception token. This prevents mis-speculation
from causing irreversible changes to program state. How-
ever, it breaks DIFT since sometimes a branch condition is
allowed to be tainted. Hence, it is necessary to add taint-
aware compare instructions that proceed normally even if
the branch condition is tainted.

Other ways to extend DEP to support DIFT include
adding taint tags to on-chip caches, widening memory buses
and dedicating memory for taint tags in the DRAM, as done
in previous work [7, 24, 8]. These extensions are promising
to improve performance as taint tags can be automatically
managed by hardware. However, as our design goal is to
minimize the changes to standard, commodity processors,
we instead use software approaches to handle tag exchanges
between processors and memory systems.

3.2 Tracking Tags in Memory Systems

One remaining issue is that, in speculative execution,
deferred exception tokens will never be propagated to
the memory system (including caches and main memory).
Thus, it is required to track the taint tags describing tainted
data in memory. Similar to other prior work [22, 18, 27],
a bitmap is used to maintain in-memory taint information.
The bitmap maintains a bit (i.e., tag) for each memory lo-

Figure 3: The general working flow of SHIFT.

cation indicating whether the location is tainted or not (”1”
for tainted data and ”0” for normal data).

To maintain the coherence of taint tag between memory
and registers, SHIFT instruments memory operations (e.g.,
load and store) in a program. On loading data from mem-
ory/cache to registers, SHIFT inserts code to first consult
the bitmap whether the data is tainted or not. The taint bit
is then set to the exception token in the target register. On
storing data to memory/cache, the inserted code updates the
bitmap according to the exception-token in the source reg-
ister.

3.3 The Design of SHIFT

Figure 3 depicts the working flow of information flow
tracking in SHIFT. First, a program tags tainted data ac-
cording to the predefined policies. Then during program
execution, the processor automatically propagates the tags
(i.e., exception tokens) in registers and a bitmap is used to
maintain the tags in memory. Finally, upon an illegitimate
use of tagged data, the program raises a security alert and
handles it according to a predefined policy engine.

The following paragraphs detail the design of SHIFT.

3.3.1 Taint Sources

Taint sources determine which data should be marked as
tainted in the bitmap and registers. Since the taint sources
may vary for different applications and diverse attacks,
SHIFT allows customization. Generally, the following
channels can be potential sources of tainted data: (1) net-
work I/O; (2) disk files; (3) keyboard input; (4) return values
of specific functions; (5) specific memory locations. SHIFT
allows users to configure the sources of tainted data by writ-
ing a configuration file. The compiler uses the policies in
the configuration file to set the taint tags for data from un-
trusted sources.



3.3.2 Taint Tracking

SHIFT relies on exception token propagation to track taint
tags in processors. It uses instrumentation code generated
by compilers to maintain taint tags in memory. Similar
to previous work [25, 6, 27, 22], SHIFT tracks only data
dependency and does not track control dependency since
many attacks do not rely on control dependency [22].

Propagation Rules: Generally SHIFT uses the default
exception-token propagation rules in computations. For
memory operations, SHIFT supports a more customizable
policy and allows propagation of tags from/to address reg-
isters and the referenced memory contents. For example, in
a load operation such as “ld r14=[r13]”, the exception token
can be set according to both the address register r13 and
the data referenced by r13. This allows flexible taint poli-
cies for pointers, e.g., whether a tainted pointer should be
allowed to reference data and how the tag is propagated if it
is allowed.

Another issue in tag propagation is handling bounds
checking code and translation tables, which is important in
increasing the accuracy of exploits detection and reducing
both false positives and false negatives [8]. SHIFT han-
dles them using two approaches. First, since SHIFT can
access program code and thus has program semantics, it
can identify such code using program analysis. Second, for
specific translation or lookup tables, SHIFT allows users
to write application-specific rules which assist the software
(e.g., compiler)to recognize and instrument such code.

Implicit Information Flow: SHIFT handles corner
cases such as xor r15=r15,r15 and sub r15=r15,r15 by
clearing the taint tag in the register. However, SHIFT cur-
rently does not aim at handling general implicit information
flow, since it is usually of little importance and may incur
many false positives [22, 8]. Moreover, modern compilers
can usually analyze simple implicit information flow and
translate it into explicit information flow to improve perfor-
mance. Simple compiler analysis could also be useful in
handling some specific kinds of implicit information flow
when necessary.

3.3.3 Violation Detection

Naturally, the default policies in DEP prevent the uses of
tainted data tagged with taint tag from being moved into
special-purpose registers or used as branch targets or re-
turn addresses. These policies are normally applicable for
most applications. Moreover, SHIFT can insert instructions
checking for exception token (chk.s) before the use of crit-
ical data. Using chk.s allows handling of security violation
exceptions at the user-level, which can significantly reduce
the overhead of analyzing program behavior or perform fur-
ther security checks to filter out false alarms.

3.3.4 Combining SHIFT with Control Speculation:

Although SHIFT has used the exception-token for taint
tracking, control speculation can still use it when neces-
sary, at the cost of some false positives. The approach is
straightforward: reverting execution to non-speculative ver-
sion of code upon speculation failure, no matter whether
the exception token is caused by tainted data or deferred
exceptions. The reason is that speculatively executed code
fragments should not have any side-effects on memory, e.g.,
storing the pending results into memory system. Thus, the
executed instruction trace does not need information flow
tracking code since there is no committed memory oper-
ation operating on tainted data. The recovery code con-
tains a non-speculative version of the code and follows the
normal information flow tracking policies to propagate the
exception-token.

Since a speculation failure may be caused by tainted data
instead of deferred exceptions, it may introduce false posi-
tives for control speculation. Thus, to preserve program per-
formance, control speculation is effective only when there is
little tainted data involved. Profiling-guided optimizations
could be helpful to decide whether control speculation is
efficient in a specific code fragment.

4 Implementation
We have implemented SHIFT based on GCC to pro-

tect applications running on Itanium processors. Other than
missing a few important instructions, the Itanium’s deferred
exception design is good enough to allow us to demon-
strate applicability and efficiency of applying DEP to DIFT.
Implementing SHIFT on a commodity available processor
enables us to run widely-used software with realistic secu-
rity policies and measure real performance, instead of using
simulation or emulation. We believe that SHIFT can be sim-
ilarly implemented on other processors built with deferred
exception mechanisms.

The following sections describe the implementation is-
sues related to Itanium and discuss our possible future work.

4.1 Implementation Issues on Itanium

Deferred Exception Support in Itanium: Itanium pro-
cessors are built with good support for deferred exception
tracking. Each general purposed register has an additional
NaT bit (NaTVal for floating point registers) to record the
deferred exception token. The NaT-bits are propagated in
parallel with the data or addresses. Itanium also provides
an instruction (chk.s) checking the existence of the NaT-bit
and jumping to recovery code if the NaT-bit is set. There are
also instructions (ld8.spill and st8.fill) to save/load the NaT-
bit to/from a NaT register (UNAT), which is automatically
saved across function calls.

Setting and Clearing NaT-bit: Unfortunately, Itanium
ISA does not include instructions to set and clear the NaT-



Figure 4: Mapping the virtual address space to the tag address
space.

bit in a register. In SHIFT, the taint source (i.e., NaT-bit) for
a register is obtained by artificially generating a deferred ex-
ception that sets the NaT-bit of the register. The content of
the register is set to zero. Other registers requiring NaT-bits
can perform add operations to taint themselves. To clear the
NaT-bit in a tainted register, SHIFT first uses a spill instruc-
tion (e.g., st8.spill) to spill the register to memory and then
loads it to the register without filling the NaT-bit. These op-
erations hurt performance since SHIFT needs to frequently
perform such operations.

Relaxing NaT-sensitive Instructions: In Itanium, the
predicate registers for both branch targets are usually
cleared to zero if the condition contains a NaT-bit. Fur-
ther, load or store from an address containing a NaT-bit
will cause a NaT consumption fault. These prohibit the
use of tainted data in compare-related instructions and load
or store addresses. To handle these, SHIFT relaxes the
operands to these instructions when necessary. Specifically,
SHIFT analyzes the legitimate uses of tainted data and adds
some relaxing code. The relaxing code clears the NaT-bit
before the legitimate uses and restores the NaT-bit after the
use completes.

Tag Space Management: The tag space is the virtual
address space for taint tags. Updating the tag space requires
address translation between the virtual address space and
the tag space. Unfortunately, the translation is more costly
in Itanium than that in traditional x86 machines. The virtual
address space in Itanium is usually partitioned into eight
equally-sized regions, with region 0 being reserved for IA-
32 applications. The top three bits in an address indicate
which region the address refers to. The region 0 is not used
by normal applications, SHIFT reuses it for tag space. Ita-
nium also uses unimplemented bits to limit the virtual ad-
dress space available to software, by forbidding the use of
a range of bits in a 64-bit address. The unimplemented bits
create holes in a virtual address space. Thus, one cannot
use a simple right-shift operation (e.g., address >> 3) to
get the tag address from a virtual address. Instead, SHIFT
moves down the region number and combines with it the
implemented bits to get the final tag address, as shown in
Figure 4.

4.2 Compiler Implementation Issues

Currently, we modified gcc-4.1.1 to implement SHIFT
for Itanium. SHIFT is composed of two main parts: (1) pol-
icy assignment that controls what data should be marked as
tainted and sets the actions when a security alert is raised;
and (2) instruction instrumentation that instruments loads,
stores and compare-related instructions. Users assign poli-
cies by writing a simple configuration file, which is then
read by SHIFT to control the process of instrumentation.
At runtime, the instrumented code checks if the program
execution violates the assigned policies.

Information flow tracking can be implemented in various
software life-cycles, including source-level [27], high-level
intermediate representation (IR), low-level IR, and even at
runtime [22]. Currently, we choose to implement SHIFT
mainly at low-level IR (RTL in GCC) since it can still ex-
tract enough program semantic information as well as the
potential of supporting multiple languages, and can share
the fine-grained control over information flow at instruction
level. SHIFT is implemented by adding a phase between the
phases “pass leaf regs” and “pass sched2” in GCC back-
end. In this phase, all registers have been allocated and the
instructions are not scheduled yet. Thus, the implementa-
tion of SHIFT can avoid interference with the register al-
location algorithm and the code scheduling algorithm for
Itanium, which are two of the most complicated phases in
GCC.

As SHIFT requires accesses to the source code, it cannot
instrument code written directly in assembly code. To over-
come this problem, SHIFT requires users to provide wrap
functions that summarize the taint tag propagation of the
untransformed assembly functions, as done in [27]. In in-
strumenting glibc, we added about 17 such wrap functions.

4.3 An Example of Taint Tracking Code
In SHIFT

Figure 5: An example of instrumenting load and store instructions
for information flow tracking, as well as the generation of a source
register with NaT-bit. The instructions with bold font are the orig-
inal instructions. The numbered ones are the instrumented version
accordingly.

Figure 5 gives an example of instrumenting load and



store instructions for information flow tracking generated
by SHIFT. It includes the code to obtain a NaT-bit. To ob-
tain a source register with the NaT-bit set, SHIFT fakes an
invalid address (Instruction 1) and issues a speculative load
(i.e., ld8.s) from the address. Speculative loading from an
illegal address will set the NaT-bit in the target register in-
stead of raising an exception. The content of the target reg-
ister is cleared to zero so that it can be used as a NaT-bit
source to taint other registers.

For a load operation, instructions 1-4 get the correspond-
ing tag from the bitmap. Instruction 5 tests if it is tainted.
Instruction 6 performs the real load operation and instruc-
tion 7 taints the target register if the tag in the bitmap is
set. Note that SHIFT normally does not allow a load from
a tainted address and permits it only if the analysis (e.g.,
bounds checking) indicates that the load is safe.

For a store operation, instruction 1 tests if the source reg-
ister is tainted or not. Instructions 2-7 update the bitmap
according to the NaT-bit in source registers and the original
value in the bitmap. Instruction 8 performs the real store
operation. Since st8.spill allows storing a register with a
NaT-bit into memory, we choose st8.spill instead of st8 to
omit additional code to save and restore the NaT-bit of the
source register.

4.4 Discussions

Compiler Optimizations: There are still lots of com-
piler optimization opportunities in SHIFT. Sophisticated
compiler optimization is surely promising to further reduce
the performance overhead of SHIFT. In our future work,
we plan to optimize SHIFT to reduce unnecessary tracking
code and enable adaptive tracking. For example, we intend
to use program analysis and profiling-guided optimizations.

Self-Modifying Code: As a compiler-based instrumen-
tation system, SHIFT has difficulties in handling self-
modifying code that is not aware of SHIFT instrumentation.
This may lose some taint information if tainted data is in-
volved in self-modifying code. Fortunately, self-modifying
code is usually not common, and it is generally rare for self-
modifying code to operate on tainted data.

Multi-threaded Code: Like most previous software-
based systems, our current implementation does not sup-
port multi-threaded applications since accessing the bitmap
is not serialized. In our future work, we intend to extend
SHIFT for multi-threaded applications and investigate the
performance implications.

Possible Minor Architecture Enhancements: As
pointed out before, setting and clearing the NaT-bit in a
register is rather costly on Itanium. In our development pro-
cess, we found that artificially generating a register with the
NaT-bit at the granularity of functions degrades the perfor-
mance by a factor of 3X , compared to generating a NaT-bit
and keeping it for all subsequent uses. Thus, we believe

that adding simple instructions to set and clear the NaT-bit
will largely improve program performance. Further, adding
a compare instruction that works for operands with NaT-
bit will save the cost for spilling and filling a NaT-bit in
relaxing a compare instruction. We present a quantitative
measurement on the performance benefit in section 6.3.

5 Security Evaluation
This section evaluates the detection ability of SHIFT us-

ing a set of real-world attacks including both high-level and
low-level exploits. We first describe the security policies
used in SHIFT to defend against typical attacks. Then, we
use the described policies to defend against real-world at-
tacks to measure their effectiveness as well as false alarms.

5.1 Attack Detection Policies

The main goal of SHIFT is to detect both low-level mem-
ory corruption exploits and high-level semantic attacks.
Thus, the policies include both high- and low-level policies.
Policies in SHIFT are not fixed and can be easily adjusted
for diverse applications. Table 1 shows an incomplete list
of policies in SHIFT and the corresponding attacks that the
policies are to defend against.

For example, policy H1 and H2 protect applications from
directory traversal attacks, by not allowing tainted data used
as a file path name to be absolute paths (e.g., starting with
“/”) or traversing out of the document root (e.g., using mul-
tiple “..” strings to forge a file path that is out of the doc-
ument root). For low-level policies, policy L1 prevents a
program from de-referencing a tainted pointer and policy
L2 prevents a potentially malicious store instruction from
overwriting critical data (e.g., GOT entry in an ELF file).
Policy L3 guarantees that the important state of CPU can-
not be overwritten by tainted data. Specifically, policy L3
prohibits a program from transferring control to malicious
code, by not allowing tainted data to be moved into branch
registers. The low-level policies are relatively fixed and are
usually turned on as the default policies in SHIFT. Multiple
policies can be combined to detect specific attacks.

5.2 Attack Detection

Table 2 summarizes our security evaluation using sev-
eral real-world vulnerabilities obtained from CVE4: three
directory traversal exploits of tar, gzip and Qwikiwiki; three
cross-site scriptings with Scry, php-stats and phpsysinfo;
one SQL command injection; and one format string attack
(we made a minor adjustment of Bftpd to make it vulner-
able of arbitrary code execution). We do not provide at-
tacks that overflow function return addresses since Itanium
has already prevented them by using dedicated registers for
function calls and returns.

4Common Vulnerabilities and Exposures, http://cve.mitre.org/



Policy Attacks to Detects Description
H1 Directory Traversal Tainted data cannot be used

as an absolute file path
H2 Directory Traversal Tainted data cannot be used as a file path

which traverse out of the document root
H3 SQL Injection Tainted data cannot contain SQL meta chars

when used as a part of the SQL string
H4 Command Injection Tainted data cannot contain Shell meta chars

when used as arguments to system()
H5 Cross Site Scripting No tainted script tag
L1 Dereferencing tainted pointer Tainted data cannot be used as a load address
L2 Format string vulnerability Tainted data cannot be used as a store address
L3 Modify critical CPU state Tainted data cannot be moved into special registers

Table 1: Security Policies in SHIFT

CVE# Program (Version) Language Attack Type Detection Policies Detected?
2006-6097 GNU Tar (1.4) C Directory Traversal H1 + Low level policies Yes
2005-1228 GNU Gzip (1.2.4) C Directory Traversal H1 + Low level policies Yes
2006-0983 Qwikiwiki (1.4.1) PHP Directory Traversal H2 + Low level policies Yes
2006-2001 Scry (1.1) PHP Cross Site Scripting H5 + Low level policies Yes
2007-4334 php-stats (0.1.9.2) PHP Cross Site Scripting H5 + Low level policies Yes
2005-3347 phpsysinfo (2.3) PHP Cross Site Scripting H5 + Low level policies Yes
2006-6912 phpmyfaq (1.6.8) PHP SQL Command Injection H3 + Low level policies Yes

N/A Bftpd(0.96 prior) C Format string attack L2 Yes

Table 2: Security Evaluation Results of SHIFT.

We compile the applications using SHIFT with the as-
signed policies. The applications are tracked at both byte-
level and word-level. We first run them normally without
attacking them to see if there are any false positives. In our
tests, all applications run normally and no security alert is
raised. Then, we attack the applications using artificially
forged input to evaluate the detection ability of SHIFT. All
these attacks are successfully detected by SHIFT. Without
SHIFT protection, all attacks succeed.

SHIFT detects these attacks by combining various high-
level and low-level policies. For example, SHIFT marks
data read from disks as untrusted and combines the low-
level policies with policy H1 to detect directory traversal
attacks to GNU Tar. To detect security exploits on Qwiki-
wiki, SHIFT marks the file path as tainted when reading the
http request and tracks the propagation of the tainted string.
When the tainted data is used as an argument of fopen,
SHIFT examines the argument. If the file path traverses out
of the document root, then a security alert is raised. Pol-
icy L2 is strong enough to detect exploits on the example
format string vulnerability in Bftpd. The malicious input
causes Bftpd to overwrite the GOT entry for library func-
tion such as “system”. Since the address to store is tainted
and there is no explicitly bounds checking, a security alert
is raised.

False Positives and False Negatives:
As a flexible information flow tracking system, SHIFT

can assign various policies to a protected program. How-
ever, one drawback of the flexibility is that SHIFT may suf-
fer from possible false positives or false negatives due to
overly restrictive or overly permissive policies. Fortunately,

typical security exploits usually have some common and ex-
pressive characteristics. Hence, it is often not difficult to
assign accurate policies to protect a program from typical
security exploits in practice. One possible but rare issue is
the false alarms due to implicit information flow or informa-
tion propagation through control dependency, which SHIFT
currently does not track. Fortunately, they do not seem to
be a serious problem in practice, as pointed out by previous
work [27, 22, 8]. As expected, we did not experience either
false positive or false negative in our security evaluation.
Furthermore, to handle sophisticated security exploits, one
might be able to use machine learning techniques to reduce
or eliminate possible false alarms.

6 Performance Results
In this section, we measure the performance of SHIFT

to answer the following questions: (1) whether applica-
tions using SHIFT can provide an acceptable level of per-
formance? (2) whether adding three instructions can further
reduce the performance slowdown? (3) what contribute to
the remaining overhead and what are their proportions?

The tests were performed on an HP Integrity rx1620
server equipped with two 1.6GHz Itanium processors and
4GB of memory running Redhat Linux Enterprise 4. We
test Apache-webserver and eight SPEC-INT2000 bench-
marks executed with the reference inputs. We compare the
performance of the benchmarks compiled using the origi-
nal GCC-4.1.1 and our enhanced instrumentation compiler
(SHIFT-GCC) at the -O3 optimization level (except -O1 for
176.gcc 5).

5GCC-4.1.1 cannot successfully build 176.gcc at -O3 optimization



6.1 Overhead with Apache

Figure 6: The relative performance of SHIFT against non-
instrumented version for Apache: the four bars mean the overhead
for latency and throughput at byte/word level.

The measurements are performed by using the apache
benchmark (ab) to issue 1,000 requests for a single file with
200 concurrent processes. The requested file size is 4 KB,
8 KB, 16 KB and 512 KB each time. Figure 6 shows that
SHIFT incurs negligible overhead for Apache. The geo-
metric mean of the overhead for throughput and latency at
all file sizes is about 1%. The overhead of SHIFT mainly
comes from the added instrumentation for load and store
instructions. Since Apache is an I/O intensive application,
the instrumentation added by SHIFT has only a little im-
pact on its performance. The overhead for requesting a 4
KB file is a bit larger than that for other file sizes. This is
because the I/O processing time in requesting a 4 KB file
contributes a bit less in the total program execution time
than requesting files in other sizes. Nevertheless, the in-
curred overhead is still low (about 4.2%). The overhead for
tracking at byte-level is a bit more than tracking at word-
level since the former one requires more code to instrument
a single instruction.

6.2 Performance Slowdown with SPEC-
INT2000

To measure the performance slowdown with the instru-
mented code for benchmarks in SPEC-INT2000 operating
on tainted data, we mark all data read from disk as tainted.
We compare the performance of applications compiled by
unmodified GCC and SHIFT-GCC. Figure 7 depicts the per-
formance slowdown for each individual benchmark as well
as the geometric average of eight benchmarks. As shown in
the figure, the performance slowdown ranges from 1.32X
to 4.73X for byte-level tracking and 1.34X to 3.80X for
word-level tracking. The average slowdown is 2.81X for
byte-level tracking and 2.27X for word-level tracking when
untrusted data is involved. The slowdown mainly comes
from the code to instrument load and store, and to relax
compare-related instructions. The performance slowdown

level

of SHIFT is significantly smaller than LIFT (4.6X)6 [22].

6.3 Performance with Architectural En-
hancements

As there are no simple instructions to set and clear the
NaT-bit in a register on Itanium, the cost is relatively high
for such operations. To get a quantitative result on the im-
pact of minor architectural enhancements, we adjust the in-
strumentation code and test the following configurations:
(1) using two simple instructions to simulate the effect of
setting and clearing the NaT-bit in a register; (2) removing
the relaxing code for compare instructions to simulate the
effect of providing a NaT-aware compare instruction. We
compare the results with the basic data of byte/word level
tracking with tainted data (byte/word-unsafe).

As shown in figure 8, the first architectural enhancement
results in a reduction of 16% performance slowdown for
both byte/word level tracking. Here, the reduction of per-
formance slowdown is the difference between the original
and new performance slowdowns. Combining the two ar-
chitectural enhancements can result in a reduction of 49%
and 47% in total for byte-level and word-level tracking.
The reduction of slowdown ranges from 2% to %173 and
5% to 166% respectively, depending on the amount of in-
volved tainted data in each benchmark. For example, the
reduction of slowdown for gcc is 173% after applying the
two enhancements for byte-level tracking (166% for word-
level tracking). By contrast, the reduction is rather smaller
for applications manipulating relatively little tainted data :
only 2% and 5% for mcf when it is tracked at byte-level and
word-level.

6.4 A Breakdown of Remaining Perfor-
mance Overhead

After the architectural enhancements, there is still some
performance overhead for SHIFT, which mainly comes
from the basic costs to instrument each load and store in-
struction. The costs are mainly composed of two parts for
each load and store instruction: (1) computation that trans-
lates a virtual address to a tag address and computes the tag.
(2) memory access that reads or updates the bitmap. To un-
derstand their contributions to the total cost, we measured
a breakdown of the cost for each part. Figure 9 shows the
performance overhead from computation and memory ac-
cess in load and store instructions for each benchmark in
SPEC-INT2000. As shown in the figure, computation in-
curs much more overhead than memory access to tag space.
This is probably because the unimplemented bits in Itanium
make computing a tag more costly than traditional x86 ar-
chitectures. Since most memory accesses actually hit in L1
cache, the cost for memory access is not significant. The

6LIFT uses the notion of “incurred overhead”, which equals (“slow-
down” - 1). Thus, the ”incurred overhead” of 3.6X should be 4.6X slow-
down.



Figure 7: The relative performance of SHIFT against non-instrumented version for SPEC-2000: the four bars mean tracking at byte/word
level with input data tagged as unsafe/safe.
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Figure 8: The impact of minor architectural enhancements. We compare the data for adding instructions for set/clear NaT bits (byte/word-
set/clear) and the data for adding instructions for both the set/clear NaT-bits and NaT-aware comparison (byte/word-both) against the
original SHIFT version (byte/word-unsafe).

gap between computation and memory access is more sig-
nificant for byte-level tracking since computing a tag for a
byte is more complex than that for a word. The instrumen-
tation for load instructions contributes much more overhead
than that for store instructions, since the number of executed
load instructions is much larger than the number of store in-
structions according to our analysis using PIN [15]. Based
on the fact that computation contributes to the major slow-
down in SHIFT, one possible compiler optimization might
be reusing the computation code for some adjacent data.

6.5 Code Size Expansion

Table 3 shows the impact of compiler instrumentation on
the code size of glibc and SPEC-INT2000. The expansion
in code size is not significant for these applications. The
degree of the code size expansion depends on the propor-
tion of instructions required to be instrumented, including
load, store and comparison instructions. The expansion in
code size is relatively small (35% and 45%) for glibc. By
contrast, the expansion for benchmarks in SPEC-INT2000
is more notable due to the relatively large proportion of in-
strumented code. Since information flow tracking at byte-
level requires a bit more code than that at word-level, the

Apps. Orig. Word Overhead Byte Overhead
size level level

glibc 11M 15M 36% 16M 45%
gzip 192K 528K 175% 627K 226%
gcc 3.6M 9.0M 150% 9.6M 160%

crafty 541K 1.3M 146% 1.5M 184%
bzip2 164K 531K 223% 637K 288%
vpr 485K 1.1M 132% 1.3M 174 %
mcf 59K 163K 176% 167K 183%

parser 583K 1.6M 181% 1.7M 198%
twolf 851K 2.5M 200% 2.8M 237%

Table 3: The impact of compiler instrumentation on code size.

code expansion is a bit larger for byte-level tracking than
word-level tracking.

7 Related Work

While there are a number of dynamic information flow
tracking (DIFT) systems, SHIFT differs from existing ef-
forts in that it makes novel uses of existing hardware sup-
ports for speculative execution. The following discussion
will focus on most related work to SHIFT.



Figure 9: A breakdown of the performance slowdown among com-
putation and memory access in load and store instructions for
tracking at both byte- and word-level.

7.1 Software-based DIFT

Source-level instrumentation [27, 12] is a viable solution
to track dynamic information flow and enforce security poli-
cies. It instruments the source code of software with DIFT
code that propagates security tags and checks security vi-
olations. It shares the high-level semantic information in
the source code, but loses low-level control of the generated
code. It thus has difficulty in taking advantage of the archi-
tectural support to lower the performance overhead. Con-
sequently, it incurs a relatively high performance overhead,
which prevents its wide use in production run.

Dynamic binary translation is an alternative approach
that instruments binary code on-the-fly with security tag
management and detection mechanisms (e.g., LIFT [22]
TaintTrace [3]). In contrast to source-level instrumentation,
it does not require accesses to the source code and can have
fine-grained control of hardware resources. Thus, it is ca-
pable of utilizing hardware features to lower DIFT over-
head. For example, LIFT [22] uses additional 64-bit reg-
isters in x86-64 for security tag propagation. Furthermore,
the runtime information such as execution traces opens the
opportunities to adaptive tracking of security tags to reduce
the performance loss. LIFT heavily uses the information
to lower the performance slowdown from 27.6X to 4.6X.
However, both LIFT and TaintTrace cannot detect high-
level semantic attacks.

Interpretation or emulation [18, 19, 21, 23] tracks dy-
namic information flow by translating the executing instruc-
tions (either high-level or low-level) into lower-level oper-
ations. They then can embed operations to track dynamic
information flow and detect information anomalies. The
advantage of these approaches is that they do not need to
access the source code. The major disadvantage is that the
incurred overhead can be quite significant. It is also hard to

detect high-level attacks that depend on program semantics.

7.2 Hardware-based DIFT

Minos [7] and work done by Suh et al. [24] are two par-
allel and independent efforts aiming at providing efficient
hardware supports to DIFT systems. These supports include
tagging registers and caches, adding tag propagation mech-
anisms in instruction set architectures. Minos targets only
control data attack while the latter handles both control and
data attacks. Both are designed to combat low-level attacks
such as memory corruption attacks but cannot detect high-
level semantic attacks.

Raksha and FlexiTaint[8, 26] are two recent DIFT sys-
tems that try to improve the flexibility and programma-
bility of hardware-based DIFT system. It allows software
to direct hardware analysis and to gain control of secu-
rity violation handlers at the user-level. Thus, it is capa-
ble of detecting high-level attacks as well as multiple con-
current attacks. Moreover, instead of using simulation, it
provides a FPGA-based prototype and supports information
flow tracking through operating systems.

Speck [20] aims to provide a unified framework to ac-
celerate security checks multi-core platform, by paralleliz-
ing computation code and taint tracking code. They use
process-level log and replay to synchronize state between
the computing thread and the security-tracking thread.
Checkpoint and rollback are used to ensure that an appli-
cation can be rolled back to a safe state once an intrusion is
detected. Their idea is orthogonal to SHIFT, which reuses
instruction-level speculation instead of OS-level specula-
tion.

7.3 Other Uses of DIFT Systems

Apart from using DIFT to detect security exploits, there
are efforts in utilizing DIFT for debugging, testing and pro-
gramming understanding [17, 13, 5]. Specifically, Masri et
al. [17] propose using dynamic information flow analysis
to discover and debug unsafe flow in program, to enforce
information flow policies. COMET [13] uses dynamic taint
tracing to improve the coverage of software testing. Fur-
ther, being aware of the importance of DIFT, there are also
efforts trying to implement general DIFT systems that are
customizable to detect security exploits, analyze program
behavior and testing [5, 12]. However, the generality pro-
vided in these systems is usually at the high cost of perfor-
mance overhead. For example, GIFT [12] requires a call to
a function on each taint tracking operation.

8 Conclusion and Future Work
We have presented SHIFT, a low-overhead dynamic

information flow tracking system for software security.
SHIFT leverages existing hardware support for deferred ex-
ception tracking to lower the runtime overhead. We have
also implemented a prototype implemented using GCC, to



protect applications running on Itanium processors. Our se-
curity evaluation shows that SHIFT can defeat a set of real-
world attacks with no known false positives. Performance
measurements on SPEC-INT2000 indicate that the perfor-
mance slowdown in SHIFT is modest. Quantitative mea-
surements show that minor architectural enhancements can
notably reduce the performance slowdown.

In our future work, we plan to extend and improve
SHIFT in several directions. First, we are currently ex-
ploring various compiler optimization techniques such as
adaptive tracking and profiling-guided optimizations to fur-
ther lower the incurred performance overhead. Second, we
plan to extend and apply SHIFT to analyze modern security
exploits, generate accurate intrusion-prevention signatures
and detect possible information leakages. Third, as SHIFT
is currently implemented using a compiler and requires ac-
cesses to the source code, we plan to implement SHIFT us-
ing a binary translator and apply various dynamic optimiza-
tion techniques to further lower its overhead. Finally, we
intend to extend SHIFT for multi-threaded applications and
investigate its performance implications.
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