
Control Flow Obfuscation with Information Flow Tracking∗

Haibo Chen, Liwei Yuan,
Xi Wu, Binyu Zang

Parallel Processing Institute
Fudan University

{hbchen, yuanliwei, wuxi,
byzang}@fudan.edu.cn

Bo Huang
Intel China Software Center
bo.huang@intel.com

Pen-chung Yew
Department of Computer
Science and Engineering
University of Minnesota
yew@cs.umn.edu

ABSTRACT

Recent micro-architectural research has proposed various schemes
to enhance processors with additional tags to track various proper-
ties of a program. Such a technique, which is usually referred to as
information flow tracking, has been widely applied to secure soft-
ware execution (e.g., taint tracking), protect software privacy and
improve performance (e.g., control speculation).

In this paper, we propose a novel use of information flow track-
ing to obfuscate the whole control flow of a program with only
modest performance degradation, to defeat malicious code injec-
tion, discourage software piracy and impede malware analysis. Specif-
ically, we exploit two common features in information flow track-
ing: the architectural support for automatic propagation of tags and
violation handling of tag misuses. Unlike other schemes that use
tags as oracles to catch attacks (e.g., taint tracking) or speculation
failures, we use the tags as flow-sensitive predicates to hide normal
control flow transfers: the tags are used as predicates for control
flow transfers to the violation handler, where the real control flow
transfer happens.

We have implemented a working prototype based on Itanium
processors, by leveraging the hardware support for control spec-
ulation. Experimental results show that BOSH can obfuscate the
whole control flow with only a mean of 26.7% (ranging from 4%
to 59%) overhead on SPECINT2006. The increase in code size and
compilation time is also modest.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:
Security and Protection—unauthorized access

General Terms

Security

∗This research was funded by China National 973 Plan under grant
numbered 2005CB321905, National Science Foundation of China
under grant numbered 90818015 and a research grant from Intel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’09, December 12–16, 2009, New York, NY, USA.
Copyright 2009 ACM 978-1-60558-798-1/09/12 ...$10.00.

Keywords

Control Flow Obfuscation, Information Flow Tracking, Opaque
Predicate, Control Speculation

1. INTRODUCTION
Reverse engineering has good applications such as recovering

valuable algorithms from legacy software, uncovering protocols
and file forms [8] for intrusion detection systems. However, it
also has many downsides. For example, software hackers often
use reverse engineering tools to discover the software vulnerabili-
ties and inject malicious code, especially for proprietary software.
For example, the CodeRed worm [30], was released after “reverse-
engineering the binary code” [17] of Microsoft IIS server. Mean-
while, software piracy, enabled by reverse engineering, is a severe
threat to software industry.

Program obfuscation [6, 28, 18, 24] is a software protection tool
to mitigate the security problems and software piracy raised by
reverse engineering. It works by transforming a program into a
functionally-equivalent counterpart, which however poses a signif-
icant barrier to uncover the high-level semantics and the structure
of the program.

Though dynamic analysis virtually can reveal the real execution
traces of any obfuscated programs, it is usually difficult to carry
out in practice due to the required time and space. Modern pro-
cessor executes billions of instructions per-second, which requires
impractical amount of resources to collect traces and to apply tradi-
tional analysis techniques, while deciding when and where to start
collecting traces is also difficult on the obfuscated program. Fi-
nally, dynamic analysis has the coverage problem in that it may
require sufficient test cases to expose many bugs and vulnerabili-
ties, which are usually hidden in rare program paths. This will add
to the already time- and resource-consuming process. Thus, there
are considerable research interests in providing program obfusca-
tion techniques, to force adversaries to switch to dynamic analysis
techniques.

Previous obfuscating approaches mostly use program transfor-
mations that rely on opaque predicates1 [6] to obfuscate the control
flow transfers, and then insert bogus code in untaken paths to obfus-
cate the data flow. Typical program transformations include control
flow flattening [28], function pointers [22], branch functions [18],
based on the fact that interprocedural alias analysis and pointer
analysis are NP-hard [6, 28, 22]. However, these approaches usu-
ally come in with notable performance degradation if applied on
the whole program level. For example, the control flattening ap-
proach [28] can incur performance overhead of more than 5X if

1A predicate is opaque if the value is known by an obfuscator, but
hard to deduce by a deobfuscator.



applied to 80% of the branches. This creates a dilemma for ob-
fuscation: obfuscating only a small region of code might not have
good obscurity, while obfuscating the whole program (especially
hot code) would significantly degrade the program performance.

To improve the stealthiness of control flow obfuscation, researchers
recently propose using signal handling as a mechanism for obfusca-
tion [24]. Specifically, it works by artificially generating exceptions
and using the exception handling mechanisms (i.e., signal han-
dling) to hide normal control flow. However, each exception used
for obfuscation is standalone and flow-insensitive, which makes the
level of obscurity directly rely on the number of exceptions. More
importantly, the approach can incur high performance overhead due
to the high cost of signal handling (more than 1000 cycles for one
signal). For example, it could incur more than 43X performance
overhead when obfuscating 90% of the branches. Thus, it can only
be used to obfuscate cold traces. However, obfuscating only cold
traces is usually not enough. First, valuable algorithms are usually
in the hot traces of a program. Second, selective obfuscation might
not be robust and resilient enough against sophisticated program-
ming analysis tools such as program slicing [19].

In this paper, we propose a scheme that leverages mechanisms
in information flow tracking [25, 7, 9] to do binary obfuscation.
To effectively support information flow tracking, researchers have
proposed various hardware extensions, including automatic propa-
gation of tags and user-level handling of security violations [13, 9,
1].

This paper explores the architectural support for information flow
tracking to enable a low-overhead and resilient control flow obfus-
cation scheme. The idea is to treat the propagation of tags as a flow

of flow-sensitive opaque predicates. The proposed scheme, called
BOSH2, explores several features in information flow tracking to
convert an artificial flow of taint tags to a dynamic flow of opaque
predicates, which can then be used to obfuscate both the control
flow and data flow of a program. First, BOSH makes a novel use
of benign tag exceptions to generate stealthy taint sources. Second,
the tags obtained from the tag exceptions can then be propagated
across the program execution path. Finally, the program relies on
the existence of the tags to force a normal instruction to raise a tag
exception to alter the control flow.

Using the flow of tags as opaque predicates for obfuscation en-
joys several advantages. First, the flow of tags is inherently a part
of the data-flow of a program. Thus, the values of the tags are flow-
sensitive instead of being constant values through the program exe-
cution as in previous approaches [6, 23, 20]. Second, operations on
the opaque predicates are moved out of the critical execution path
and could be executed in parallel with normal execution, which
creates notable performance advantages. Finally, the control flow
transfers are done using normal instructions instead of explicit jump

instructions, making a static analyzer difficult to detect where the
control transfer might happen.

Though information flow tracking is still an active research topic,
modern commercial processors (i.e., Itanium I and Itanium II) have
already been built with the support for information flow tracking.
Specifically, Itanium extends each general purpose register with an
additional bit (e.g., NaT bit) to track the deferred exceptions dur-
ing speculative execution. We thus implemented a working pro-
totype on Itanium processors using GCC to do transformation, in-
stead of using simulation or emulation. Our preliminary results on
SPECINT2006 show that BOSH can obfuscate the whole control
flow graph, with only a mean of 26.7% (ranging from 4% to 59%)

2BOSH is short for binary obfuscation using speculative hardware,
as BOSH is prototyped on an Itanium machine with speculative
hardware support.

performance overhead. We also analyzed the resilience of the ob-
fuscation and evaluated BOSH using IDA-pro.

In summary, this paper makes the following contributions:

• The use of the propagation of information flow tags as flow-
sensitive opaque predicates.

• The BOSH design for binary obfuscation, which leverages
the taint-propagation and user-level exception handling fea-
tures in information flow tracking to obfuscate binaries.

• A working implementation of the above techniques on com-
mercial processors (i.e., Itanium) through the novel use of
hardware support for exception token propagation in control
speculation. The evaluation results show that BOSH can ob-
fuscate the whole control flow graph, yet comes with very
low overhead.

The rest of the paper is organized as follows. The next section
reviews previous literatures and provides some background infor-
mation on control flow obfuscation and information flow tracking.
Section 3 describes the design of BOSH that uses the architectural
support of information flow tagging as the main building block.
Section 4 follows with the implementation issues of BOSH on Ita-
nium processors by leveraging the support for speculative execu-
tion. After some descriptions on the setup of experiments, the re-
silience of BOSH and its incurred performance overhead are eval-
uated in section 5.1 and section 5.2 accordingly. Finally, section 6
concludes the paper.

2. BACKGROUND AND RELATED WORK
BOSH is related to both control flow obfuscation and informa-

tion flow tracking. This section reviews previous literatures and
gives a brief introduction to control flow obfuscation (and its coun-
termeasures), as well as information flow tracking and its architec-
tural support.

2.1 Binary Obfuscation
According to Collberg et al. [5, 6], the process of software obfus-

cation is a set of semantic-preserving transformations that converts
a program into an unintelligible one, yet with similar observable
behavior. There are generally three types of program obfuscations:
layout obfuscation, which applies a source-to-source transforma-
tion to render a program unreadable by human; intermediate-level
obfuscation, which obfuscates a program at intermediate represen-
tation (IR) level, which is typically used for interpretation-based
language such as Java; and binary obfuscation, that obfuscates the
layout and control flow of binary code. This paper focuses only on
binary obfuscation.

Generally, there are two necessary steps to reverse engineer bi-
naries: disassembly [14], which transfers object code into assem-
bly code; decompilation [4], which recovers the high level seman-
tics from assembly code. Therefore, the general binary obfuscation
approach focuses on two aspects: confusing the disassembly [18,
24], which is usually implemented on CISC machines (e.g., x86),
by utilizing the variable length of instructions; disrupting the de-
compilation, usually by obfuscating the control and data flow, thus
makes it difficult to uncover program semantics. Though the idea
of BOSH can be applied to confuse both processes, we currently
only focus on confusing the process of decompilation for the sake
of portability.

Many current obfuscation schemes use opaque predicates [6, 20]
to fake infeasible control flow, and then insert bogus code that fur-
ther obfuscates the control and data flow. Opaque predicate is a



conditional code that is always true or false (but not both), but the
value is difficult to deduce by a deobfuscator.

if (x*x >= 0) {

s1;

}

else {

s2; // bogus code

}

The above code fragment shows a naive example of opaque pred-
icate. Since “x ∗ x >= 0” will always be evaluated to be true,
statement “S1” can be obfuscated as an “if-then-else” statement
and the additional bogus code “S2” can be inserted. Nevertheless,
the shown example is rather simple and real obfuscation schemes
usually use more sophisticated approaches such as aliased opaque
predicates that are based on the difficulty of alias analysis.

Wang et al. [28] proposed a set of obfuscating transformations
such as control-flow flattening and function pointers to obfuscate
both the control and data flow of a program. Some of these tech-
niques have already been used in commercial obfuscation software [3].
However, these techniques are implemented only at intraprocedu-
ral level, limiting their resilience. To improve the resilience of ob-
fuscation, researchers propose implementing obfuscation based on
the difficulty of interprocedural analysis, such as alias analysis and
function pointer analysis [22], which is shown to be NP-hard. To
defend against possible program slicing [29] attacks, Majumdar et
al. [19] correlate each program slice and create data dependency
between slices, thus forming a large program slice. Ge et al. [12]
use a control-flow based obfuscation that separates one application
into client-server like communicating processes. The client pro-
cess relies on the server process to make decision on the target of
the control flow. However, the communication cost can be pro-
hibitively high. Most of these systems usually incur notable perfor-
mance overhead when applied to the whole program level.

It should be noted that all of the above techniques obfuscate the
normal control and data flow of a program using normal control
flow transfer such as branches. For example, to fake an infeasi-
ble control flow, an obfuscator usually uses a predicate that is al-
ways true (or false) as the branch condition. It might be subject to
constraint analysis of conditional code to filter out of unsatisfiable
conditions [26]. To increase the stealthiness of binary obfuscation,
Popov et al. [24] propose a signal based scheme that relies on ex-
ceptions to obfuscate the normal control and data flow to defend
against static disassembly. Since exception is a natural behavior of
regular instructions, a static deobfuscator can hardly determine its
existence. However, since the cost of a signal is usually expensive
(more than 1000 CPU cycles), frequent exceptions could signifi-
cantly degrade the program performance.

2.2 Information Flow Tracking

get (fd, &a);

base = a;

fn = base + offset;

call fn;

Taint Untrusted Source

Tag (a) = 1;

Tracking Untrusted Data

Tag (base) = Tag (a);

Tag (fn) = Tag (base) || Tag (offset);

Exploit Detection

if (Tag (fn))  { Alert (“ Attack !”); }

P
ro

g
ra

m
 E

x
e

cu
ti

o
n

In
fo

rm
a

ti
o

n
 F

lo
w

 T
ra

ck
in

g

Figure 1: The general work flow of information flow tracking.

Figure 1 gives an overview of the work flow of information flow
tracking (IFT). As shown in the figure, IFT has three stages: (1)
tagging sources, by marking data from specific sources or execution
results under some special conditions; (2) tracking tags in program
execution. IFT assigns a tag to each memory location and the tag
is propagated during program execution according to the program
dependency (control or data dependency). A memory location is
tagged if it is derived from tagged sources; (3) detecting potential
tag violation. The tag marked or propagated in the previous two
stages is checked before program data is used in an unexpected
way. If an unexpected usage is detected, a tag violation alert is
raised to report possible exceptions. Specifically, in taint tracking,
a tag violation indicates a possible security attack is raised, while in
control speculation, a tag violation means a piece of speculatively
executed code should be reexecuted.

One typical use of information flow tracking is the use of taint
tracking [9, 1] to defeat various attacks. Besides its application in
security, IFT has also been used in understanding the life cycle of
sensitive data [2] , visualizing the data flow of a full system [21]
and improving the coverage of software testing [16].

Implicit vs. Explicit User-level Exception Handling: Recently,
due to the importance of using information flow tracking for filter-
ing out false alarms, intrusion analysis and debugging, information
flow tracking systems are also extended with the support for user-
level security exception handling [9]. Handling tag exception at
user-level allows application software to directly gain control of tag
violations, without the kernel intervention. Hence, the time spent
on handling security violations (e.g., filtering false alarms) can be
largely reduced. There are generally two kinds of user-level excep-
tion handling: implicit one, all instances for one type of exceptions
jump to one centralized pre-registered handler [9], which resembles
the signal handling mechanism; and explicit one, each instance of
an exception has its own handler and explicit instructions are pro-
vided to jump to the handler [13].

3. CONTROL FLOW OBFUSCATION WITH

INFORMATION FLOW TRACKING
In this section, we describe how to explore the microprocessor

support for information flow tracking to build a low-overhead, re-
silient and stealthy binary obfuscator against static analysis. We
assume that the underlying processor at least has the tag propaga-
tion mechanism as well as user-level tag exception handling. One
can also design new hardware for control flow obfuscation. How-
ever, we believe the essential parts should be similar.

3.1 Overview: From IFT to Obfuscation
To confuse a static deobfuscator, BOSH is designed to obfuscate

the normal control and data flow of a program. To achieve this,
BOSH exploits the fact that the value of the tag for a variable is
flow-sensitive and hard to deduce for a static analyzer. Based on
this fact, BOSH reuses the tags as opaque predicates. The value of
a tag for a variable is used to determine the transfer of control flow,
either normal or exceptional.

A simple and intuitive example using implicit exceptional han-
dling is shown in Figure 2, which also depicts the main idea of
BOSH. The left side of Figure 2 is the original code, which has one
unconditional control flow to a code label L1. In the right side, the
obfuscated code instead appears as a sequentially executed instruc-
tion sequences and contains no explicit control flow. The tagged
data is obtained from the r5, which contains a tag. Since a register
with a tag cannot be used as a load address (e.g., in taint tracking),
loading from r3 will trigger a tag violation and transfer the control



code before

jmp L1

L2:   code after

...

L1: 

(a) original code

code before

r3 = r4 + r5  //r5 is with tainted tag

ld r6, [r3]     //security exception, jump to handler

r5 = 0         //bogus code, confuse data flow analysis

L2:     code after

…

L1: 

handler: 

idx = hash (fault_pc)

jmp j_table[idx]; 

(b) obfuscated code

Obfuscation

Figure 2: An example of obfuscating control flow in BOSH

using implicit user-level tag exception handling: an explicit

jmp instruction is converted to several sequentially executed

instructions; a tainted tag in r3 as the loading address to ld

instruction will cause control tranfer to the violation handler,

where the real control transfer happens.

to a user-level handler, which relies on a jump table to complete the
real control transfer.

This simple example shows the key techniques that make BOSH
satisfy the desired criteria for obfuscation:

• Low-overhead: BOSH incurs very low overhead for two rea-
sons. First, the tags can be propagated in parallel with normal
program execution, making maintaining the opaque predi-
cates at virtually no cost. Second, the control transfer is done
via the user-level tag exception handling, instead of expen-
sive OS-trap, which indicates significant performance advan-
tages.

• Resilience: The opaque predicates (i.e., tags) are summa-
rized and stored in hardware, instead of relying on code prop-
erty such as “x ∗ x >= 0”. Therefore, it is less vulnerable
to those attacks that use a constraint solver to filter out in-
feasible conditions [26]. Moreover, to statically determine
whether some data is tagged or not, an attacker needs to
obtain the global control and data flow information, which
could be further obfuscated by adding bogus code. BOSH
can insert bogus code that confuses the tag propagation (e.g.,
clearing the tags), fakes infeasible control flow edges and
nodes and even falsifies call sites and targets.

• Stealthiness: As a number of instructions may trigger tag ex-
ceptions, it is hard to statically determine where the actual
control flow transfer happens. For example, according to the
pointer taintness policy [25, 9] in taint tracking, load from
a tainted address should trigger an exception. Using tainted
data as the conditional code or branch targets may also trig-
ger exceptions. For a CISC architecture such as X86, nearly
every instruction may operate on memory. This makes the
obfuscation even stealthier.

3.2 Binary Obfuscation Using IFT
To obfuscate a program, BOSH mainly relies on the following

steps: (1) stealthily generating the source of tags using benign tag
exceptions; (2) statically creating an interprocedural data flow to
propagate the tags and changing the normal control flow according
to the value of tags; (3) Inserting bogus code which has no visible
side-effects to obfuscate the normal control and data flow to static
analysis.

3.2.1 Manufacturing Stealthy Tag Source Using
Benign Tag Exceptions

The first step to create a flow of tags is obtaining the tag source.
Knowing the tag source will not allow a static analyzer to easily

derive the taint flow due to the sophisticated control and data trans-
formations (section 3.2.2 and section 3.2.3). However, to further
confuse a static analyzer, BOSH makes novel uses of tag excep-

tions to generate tag source, but in a benign way.

//attstr can be dynamically forged using string composition.

//attstr is marked as tainted.

char * attstr=''<Stackpop><<addr1><addr2><addr3><addr4>>

<%N1u%n%N2u%n%N3u%n%N4u%n>'';

...;

char     buffer[512];

snprintf (buffer, sizeof (buffer), attstr);

buffer[sizeof (buffer) - 1] = '\0';

Figure 3: Example attack string to generate taint source.

Figure 3 shows an example to manufacture stealthy taint source
using memory errors in taint tracking. There are various types of
memory errors such as buffer overflow, heap overflow and format

string that are hard to detect by a static analyzer. Most existing
static analyzers require accesses to the source code, and with some
program annotations [15], thus are hard to be applied to binary code
with sophisticated obfuscating transformations. If a memory error
cannot be detected, it can virtually modify any parts of the pro-
gram’s code and data.

The piece of code shown in Figure 3 is simplified from wu-ftpd.
The taint propagation policy is used as follows: storing a tainted
value to an address will taint the address. In this example, a tainted
input format string attstr is sent to the snprintf function. The Stack-

pop in attstr is a macro and used to increase the stack pointer to
point to addr1. Afterwards, each time the snprintf encounters %n,
Ni will be written into addri (i=1, 2, 3, 4), thus tainting addri.
Hence, by forging Ni and addri, any memory locations can be
tainted in this way. Note that the attstr can be dynamically forged
using string composition to make it difficult to guess the address.
The calls to snprintf can also be converted to indirect calls using
function pointers.

3.2.2 Control Flow Transformation Using the Tag
Flow

The goal of this step is to confuse the static analyzer from ob-
taining a correct control flow graph (CFG). Determining the CFG
in a normal program is not difficult since the branch and control
transfer instructions are usually easy to identify. Thus, BOSH aims
to hide both the branch and control transfer instructions using se-
curity exceptions. The basic mechanisms were already shown in
Figure 2.

BOSH first predetermines a static flow of tags at compile time.
The tags can be propagated in normal program execution but can-
not be used in inappropriate ways (such as call targets). Second,
BOSH collects all control flow transfer instructions in a program.
It then randomly converts a certain percentage of such instructions
by triggering tag exceptions and using exceptional control flow to
do the transfer. Since the exceptional control flow is essentially un-
conditional and thus cannot handle a conditional control transfer,
BOSH converts the conditional control transfer to unconditional
control transfer before using the exceptional flow.

All exceptional control transfer will go through the tag exception
handling mechanism, either an implicit or explicit one. For an im-
plicit exception handling mechanism, BOSH uses a jump table to
do the control transfer. To get the correct jump target for a secu-
rity exception, BOSH needs to maintain the mapping between the
PC of the original control transfer instruction and its jump target.
To avoid exposing the mapping table, a perfect hash function can



be used to map the PC to the index of the jump table and use it
to access the real jump target. Some bogus jump targets can be
forged into the jump table. This can further confuse the static an-
alyzer from guessing the start of a basic block using the entries in
the table. The implicit exception handling approach might incur
some performance overhead due to the computation of hash and in-
direct references to the jump table, but is very effective in hiding
the normal control flow.

For explicit exception handling, BOSH inserts an instruction to
check the existence of security exceptions and redirect the control
flow directly to the real target if necessary, instead of going through
a centralized handler. This can be more efficient, though at the
expensive of stealthiness.

3.2.3 Data Flow Transformation to Hide Tag Flow

The flow of tag propagation is still not resilient enough since it
only involves normal use of tagged data. BOSH thus inserts more
bogus code and data that involves potential abnormal uses of tags
to confuse the static analyzer. For example, BOSH creates aliased
pointers to the tagged locations and uses pointers to modify the
values. BOSH also creates artificial basic blocks and control flow
transfers to confuse a flow-sensitive analysis. To obfuscate the call
graph, function calls are selectively replicated in the bogus code to
mess the call graph.

3.3 Discussion

3.3.1 Obfuscation Strength

Attackers need to derive the tag flow by distinguishing the con-
trol flow and identifying infeasible data flow. Theoretically, BOSH
uses aliased pointers to necessitate an interprocedural, context-sensitive,
may-alias pointer analysis. Attackers are required to understand
precisely the may-alias set from an obfuscated control/data flow
graph.

3.3.2 Attacking Scenarios

The necessary steps to attack obfuscated binary code involve dis-
assembling the binary code, gaining the control flow graphs and
then performing program analysis and transformations to undo the
effects of obfuscation.

However, to obtain the real control flow and data flow graphs, a
determined static analyzer (i.e., being aware of the approach taken
by BOSH) must first derive the whole tag flow. As the tags are
stored in hardware instead of using code property, it is less vulner-
able to symbolic execution or constraint solving. Further, as there
are no explicit code patterns for real control transfer, using statis-
tical analysis can derive little information about the probability of
control transfer for an instruction.

Besides, BOSH brings no convenience to attackers using dy-
namic analysis approaches. Since the flow-sensitivity nature of
BOSH, it is less vulnerable to single-point of leakage. That is,
knowing a single value of a tag does not lead to the leakage of
other tags in a code region. This is because, the value of a tag is
sensitive to the flow of execution, instead of being always the same
value as in other approaches [6].

Finally, BOSH currently does not aim to protect against dynamic
program analysis. One can also incorporate other approaches such
as anti-debugging [11] and anti-analysis techniques to further de-
fend against dynamic analysis.

3.3.3 Impact on Other Uses of Tags

Using tags as flow sensitive opaque predicates might prohibit
the original use of the tags, such as taint tracking or speculative

ld8.s r15 = [r14]

add r16 = r15,8 

...

if(flag) {

chk.s r16, handler

next:

st8 [sp] = r16

}

...

handler:

ld8 r15 = [r14]

and r16 = r15,8

br next

if(flag) {

ld8 r15 = [r14]

add r16 = r15, 8

st8 [sp] = r16

}

...

Control

Speculation

Figure 4: An example of control speculation: the ld instruction

is speculatively moved up to hide its latency. An instruction

checking exceptions (chk.s) is inserted in its initial location to

catch speculation failure and jump to the handler.

execution. However, the tag flow used for control flow obfusca-
tion is determined at compile time. Thus, other flows not used for
obfuscation can still be used for the intended uses, which might fur-
ther confuse a static analyzer. Fortunately, recent research proposes
multiple bits of tags and allows flexible uses of tags [9, 27], which
can further allow the coexistence of control flow obfuscation with
other uses of tags.

4. IMPLEMENTING OBFUSCATION ON

ITANIUM
Though information flow tracking is still an active research area,

Itanium has already been built with the support for information flow
tracking in the form of deferred exception tracking. We thus choose
to implement BOSH on Itanium instead of relying on simulation
or emulation. We have implemented a working prototype using
GCC4.2.3 3 to do obfuscating transformations.

This section first describes the hardware features that are use-
ful to support binary obfuscation. Then, it presents how BOSH is
implemented on Itanium based on control speculation.

4.1 An Overview of Architectural Support on
Itanium

To hide the high latency of memory operations, Itanium is built
with the support for control speculation, which allows instructions
to be speculatively executed before knowing whether they need to
be executed or not. However, executing such speculative instruc-
tions might cause exceptions, which might not belong to the nor-
mal behavior of the program. To handle this case, Itanium imple-
ments deferred exceptions for speculatively executed instructions,
by which an exception is deferred instead of being thrown out im-
mediately. For example, Itanium provides speculative load (e.g.,
ld.s) instructions, which are with similar semantics with regular
load instructions but the exceptions are deferred for later handling.

To support deferred exceptions, each general purpose register is
extended with an additional deferred exception token (e.g., NaT,
Not a Thing) to keep track of exceptions. The token is propagated
along with program execution. Itanium also provides instructions
to check the existence of exceptions such as tnat, which tests if a

3While BOSH can be similarly implemented on other aggressively
optimized compilers such as IMPACT and ICC, we choose to im-
plement it on GCC because GCC is a standard distribution along
with Linux.



register contains an exception token (i.e., NaT bit) and chk.s, which
jumps to some recovery code if the register is with an exception
token. Figure 4 gives an example of control speculation: the ld

instruction is speculatively moved up to hide its latency. If an ex-
ception occurs in “ld8 r15 = [r14]”, an exception token will be
recorded in r15. The token is then propagated to r16 and tested by
the chk.s instruction, which examines the exception token in r16

and transfer the control to the handler code.

4.2 Implementing Obfuscation on Itanium
From the previous section, we can see that the microarchictural

support for control speculation can be viewed as another form of
IFT: both of them extend the general purpose registers with addi-
tional tokens and propagate the tokens along program execution;
both of them provide mechanisms to handle user-level exceptions.
However, there are still some differences between them, which pose
challenges to the implementation of BOSH.

First, the exception tokens on Itanium are not allowed to flow
to memory systems, while using explicit instructions to save the
tokens in memory will provide clues to attackers. For example, a
special store instruction (i.e., st.spill) should be used to save the
NaT token in a register to memory, which is a hint to the existence
of a NaT token. Propagating tokens only in registers might limit the
stealthiness. Second, the user-level exception handling is explicit
instead of implicit, thus requiring instructions to trigger them and
do the control transfer. For example, to trigger control transfer ac-
cording to the NaT token, either tnat or chk.s should be used to test
a register. This might sacrifice the stealthiness of control transfer.

To overcome these problems, we make several design tradeoffs
in implementing BOSH on Itanium, to preserve the resilience and
performance of BOSH. To preserve resilience, we partition the flow
of tags into the interprocedural level and intraprocedural level. For
interprocedural level tags, we simulate them based on the data-
flow problem that, determining whether a pointer is aligned or not
in the presence of pointer alias requires interprocedural, context-
sensitive, may-alias pointer analysis, which requires precisely un-
derstanding the may-alias set, thus is very difficult. Specifically,
we simulate the tags by using the property whether a pointer is
aligned to a specific value (e.g., 1, 2, 4 or 8). In Itanium, loading
from an unaligned address will trigger an exception, which will be
deferred and recorded in the NaT token if the load instruction is
speculatively executed. Thus, the tag propagation is maintained at
the interprocedural level by modifying the values of pointers. The
alignment of a pointer is flow-sensitive and not constantly the same.
Aliased pointers are used to modify the alignment of a pointer dur-
ing the control flow.

For intraprocedural propagation of tags, we make use of the fact
that Itanium has a rich set of registers and propagate them mainly
in registers. The source of the NaT token is obtained by loading
from the interprocedural pointers.

To save the performance loss, we use the explicit way of trigger-
ing control transfer according to NaT tokens. However, to make it
difficult for an attacker to guess the real control transfer by iden-
tifying the checking instruction (e.g., tnat and chk.s), we convert
all explicit control transfer instructions to the form that uses the
NaT tokens as oracles to direct the control flow, as well as inserting
faked control transfer using NaT tokens in bogus code.

4.3 Implementation Details
We have implemented BOSH by modifying GCC4.2.3 for the

Itanium processor. The changes to GCC consist of several passes
added to the compilation process. The following details the imple-
mentation of BOSH on Itanium using GCC to do transformations.

4.3.1 NaT Token Generation

For the intraprocedural tag propagation, we insert a number of
pointers as the tag sources. The initial alignment of the pointers
is crafted using our faked format string attacks, as described in
section 3.2.1.

To prevent a static analyzer from distinguishing between loads
and speculative loads that generate NaT tokens, all load instructions
are converted to speculative loads. To avoid the visible side effects
from the conversion, we adjust several hardware bits controlling the
NaT bit generation and make the speculative load behaves similarly
to normal load, except that loading from an unaligned address will
generate a deferred exception.

4.3.2 Steps in Binary Obfuscation

The following paragraphs describe the steps to do obfuscation
transformation, code example of obfuscating a branch instruction
shown in Figure 5.

• Flipping conditional branch: Control flow transfer using NaT
tokens is only applicable to unconditional branches. Accord-
ing to our measurements, a large proportion of the branches
are conditional. To increase the candidates, BOSH first con-
verts all conditional branches to unconditional branches. This
is done by first reversing the predicate register (i.e., ∼p6)
and creating a conditional jump to the fall-through code la-
bel (i.e., nL), then an explicit unconditional jump (i.e., br) is
inserted after it.

• Obfuscating control transfer: Two candidates are available to
obfuscate control transfer in Itanium: tnat and chk.s. How-
ever, chk.s requires 18 cycles to do a control transfer if the
register is with a NaT token, while tnat requires only 1 cycle.
Thus, BOSH chooses tnat. In this step, the jump instruction
is replaced using tnat to test the existence of NaT in this step.
In the code example, the instruction “tnat.z p0,p1 = rA” tests
the existence of NaT token and sets the corresponding pred-
icate registers. The actual control transfer then depends on
the value of the predicate register (i.e., p1).

• Inserting bogus code: Two levels of bogus code can be in-
serted in this step, which provides opportunities to imple-
ment control and data flow obfuscation described in section 3.2.3.
The first level bogus code is on the real execution path and
should have no visible side effect on a program. To pre-
vent unexpected control flow transfer in the first level bogus
code, BOSH relies on the data-flow analysis in the compiler
to guarantee that a NaTed register will not be used in an un-
safe way. One interesting feature on Itanium is that using
a register with NaT token as comparing target will set both
predicate registers to zero, preventing both branches from be-
ing taken. This feature essentially breaks the assumptions by
most de-obfuscators, which assume that “conditional jumps

can be either taken or not taken” [14]. Hence, an informed
attacker now needs to assume three possible targets for a
branch. As shown in figure 6. BOSH explores this feature
to create faked control flows and bogus code, which makes
static analyzer much harder to analyze the control flow graph.

The second level bogus code will not be executed and thus
can be arbitrary code. Here, BOSH inserts code mainly aim-
ing to introduce non-trivial aliases to confuse the analysis of
tag propagation. Specifically, BOSH inserts arbitrary num-
ber of pointer variables and creates indirect references to nor-
mal variables using the pointers. These pointers appear to



(p6) br.cond 

code_after
Flip 

branch

(~p6) br.cond nL

br L

nL:

code_after

ldx.s rA = [unaligned addr]

… //propagation of NaT

(~p6) br.cond nL

tnat.z p0,p1 = rA

(p1) br.cond L

nL:

code_after

ldx.s rA = [unaligned addr]

… //propagation of NaT

(~p6) br.cond nL

bogus level1(no side effect)

tnat.z p0,p1 = rA

(p1) br.cond L

bogus level2(any code)

nL:

code_after

Obfuscate

CFG

Bogus code 

insertion

Figure 5: Example of the steps to obfuscate a conditional control transfer. The conditional branch is executed if the predicate register

p6 is true.

ldx.s rA = [unaligned addr]

… //propagation of NaT

(~p6) br.cond nL

other bogus code (no side effect)

tnat.z p0,p1 = rA

(p1) br.cond L

bogus level2(any code)

nL:

code_after

cmp.ge p6,p7=rA, rB //p6,p7 will be both zero

(p6) rA = rC; //not executed

(p6) br.cond fakeLabel1 //not executed

(p7) br.cond fakeLabel2 //not executed

Figure 6: Insertion of bogus code that breaks the assumption

that conditional jumps can be either taken or not taken.

have dependency and alias with the NaTed registers and un-
aligned memory locations. Further, BOSH selectively repli-
cates control transfer code from existing code to the bogus
code, to shuffle the control flow. BOSH also replicates some
calls to existing functions to mess the call graph. Since the
bogus code in the second level will not be actually executed.
We can virtually add arbitrary code with very little overhead.

• Converting ld and inserting bogus code: this step converts all
normal ld into the speculative versions, and randomly adds
bogus code after the conversion. Figure 7 shows the example
code to obfuscate the ld and branch (i.e., br.cond) instruc-
tion. It can be found that the code used to obfuscate ld and
branch is almost the same. The only difference lies in the
alignment of the address, which can hardly be deduced by a
static analyzer.

Note that we mainly do most of the transformations of BOSH on
the low-level IR (intermediate representation, RTL in GCC). These
transformations thus interact with the normal compiler optimiza-
tion such as register allocation and instruction scheduling. These
compiler optimizations will bring more obfuscation effects on the
final code and make the code more natural.

5. EXPERIMENTAL SETUP
All tests were performed on an HP Integrity rx1620 server equipped

with two 1.6GHz Itanium processors and 4GB of memory running

(p6) ldx rA = [address] obfuscation

(p6) ldx.s rA = [address]

bogus code

tnat.z p0,p1 = rA

(p1) br.cond fakelabel

(p6) br.cond label obfuscation

(p6) ldx.s rA=[unaligned addr]

bogus code

tnat.z p0,p1 = rA

(p1) br.cond label

Figure 7: The obfuscation effects for ld instruction and branch

instruction, which are almost the same. The difference lies in

whether the addr is aligned or not.

Redhat Linux Enterprise 4. We test all C benchmarks except perl-
bench4 of SPECINT2006 executed with all reference inputs. To
evaluate the efficiency of BOSH, we measure both the effects and
resilience of obfuscate code, as well the incurred overhead on both
execution time and code size.

For resilience tests, we use the control flow error as the metric
and evaluate the relative control flow errors by comparing the ob-
fuscated code with the original code. For performance tests, we
compare the performance of the benchmarks compiled using the
original GCC4.2.3 and our obfuscating compiler at the -O2 opti-
mization level.

5.1 Obfuscation Strength
It is generally hard to quantify the strength of an obfuscation

scheme. In this section, we attempt to evaluate the effectiveness of
BOSH to count the control flow errors. The results are obtained
by using IDA-pro [10], which is a state-of-the-art reverse engi-
neering tool, to analyze both the control flow graph of the original
and obfuscated programs. We also show the stealthiness of BOSH
by comparing the instruction distribution of an obfuscated program
with that of unmodified one. Finally, we use IDA-pro to visualize
the effect of obfuscation on a simple bubble sort program.

5.1.1 Control Flow Errors

Generally, there are two sources of errors in identifying the con-
trol flow graph of an obfuscated program for a static analyzer. First,
the control flow edges appeared in the original program may not ap-
pear in the obfuscated program , since BOSH may have converted
the original control flow into control transfer using NaT tokens.
Second, there are several sources of bogus code control transfer
added in the obfuscated program, such as converting from load to

4Perlbench failed to compile on IA64 with gcc4.2.3.



 0

 0.05

 0.1

 0.15

 0.2

 0.25

a
d
d

ld m
o
v

s
t

c
m

p
b
r.c

o
n
d

b
r.c

a
ll

s
x
t

b
r

s
h
l

z
x
t

o
r

s
u
b

a
n
d

s
h
r

e
x
tr

a
llo

c
b
r.c

lo
o
p

x
o
r

d
e
p

tb
it

x
m

a
g
e
tf

x
m

p
y

x
c
h
g

c
h
k

tn
a
t

P
e
rc

e
n
ta

g
e
 o

f 
in

s
tr

u
c
ti
o
n
s

Original

Obfuscated

Figure 8: The obfuscation stealthiness: Distribution of Individ-

ual Opcodes of gcc in SPEC2006

speculative load (Fig. 7), bogus control transfer when using NaTed
register as comparing targets, as well as the arbitrary control trans-
fer code in the second level bogus code in obfuscating a conditional
branch.

Table 1 shows the obfuscating effects on the whole control flow
graph of eight applications in the SPECINT2006 benchmark suite.
We measure the effect of obfuscating transformations in three met-
rics: changes to the call graph, control flow edges and the ba-
sic blocks. As shown in the table, on average, there is a factor
of 3.62 of call edges and a factor of 5.68 of control flow edges,
which means BOSH inserts more than 4.68X bogus edges includ-
ing 2.62X bogus call, which IDA-pro failed to distinguish. Also,
for the basic blocks, we can see a mean factor of 5.02.

The significant changes to control flow graph, cooperated with
the bogus code that changes the data flow, can make a static an-
alyzer (IDA-pro in our case) hard to obtain the true control flow
graph.

5.1.2 Obfuscation Stealthiness

Figure 8 shows the distribution of major instruction opcodes. We
choose gcc to illustrate results as gcc has more types of opcodes
compared to others such as bzip2. As shown in the figure, the per-
centage of each opcode in the obfuscated version is still close to
that in the original version, except for branches and tnat. This is
expected because BOSH adds faked control flow graphs and call
graphs, causing the increases of branches. Besides, a number of
tnat instructions are introduced to obfuscate control transfer.

5.1.3 Visualizing the Effects of Obfuscation

To give an intuitive view on the effect of obfuscation, we use IDA
pro to extract the control flow graph of both the original program
and obfuscated one. To make the graph still distinguishable, we use
a small program that implements the bubble sort algorithm.

Figure 9 shows the original control flow graph and the obfus-
cated one. The green, red and blue edges represent the backward
edges, non-fallthrough edges of conditional branches and fall-through
(also including the call and unconditional branch) edges, respec-
tively. It can be seen that IDA pro cannot distinguish most of the
faked infeasible control flow edges. Hence, we can see a dramati-
cally change to both the control flow edges and nodes.

Before obfuscation After obfuscation

Figure 9: The obfuscation effects on bubble sort. The

green, red and blue edges represent the backward edges, non-

fallthrough edges of conditional branches and fall-through

(also including calls and unconditional branches) edges.

0%

10%

20%

30%

40%

50%

60%

70%

401.bzip2

403.gcc

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

GEOMEAN

O
v
e
rh

e
a
d

100%

80%

50%

30%

10%

Figure 10: The performance overhead of BOSH for

SPECINT2006 when randomly obfuscating 100%, 80%, 50%,

30% and 10% of the control flow transfer.

5.2 Performance Evaluation
A practical software obfuscator should not incur notable perfor-

mance slowdown, or users are unwilling to trade performance for
obscurity. In this section, we quantitatively evaluate the impact of
the obfuscating transformations on the performance, code size and
compilation time.

5.2.1 Execution Time

We measured the performance overhead of eight applications in
SPECINT2006, as well as the sensitivity of the performance on the
proportion of obfuscated control transfer. The results are shown
in Figure 10. For full program obfuscation, the performance slow-
down ranges from 59% (gobmk) to 4% (mcf ), with a geometric
mean of 26.7%. When the proportion of the obfuscated branch de-
creases, the mean overhead also degrades: the mean overhead for
obfuscating 80%, 50%, 30% and 10% of the control flow are 17%,
14%, 10% and 6%, respectively. The performance overhead for
hammer behaves a bit abnormally which is the same for obfuscat-
ing 80% and 50% and no overhead when obfuscating 10%, prob-
ably due to the unexpected interaction between the compiler opti-



Application
Call Graph Overall Control Flow Edges Basic Blocks

Ecori Ecobf Ecori/Ecobf Eaori Eaobf Eaori/Eaobf Nori Nobf Nori/Nobf

bzip2 686 6835 9.96 2902 28783 9.92 2288 22323 9.76

gcc 71132 206076 2.90 191586 935657 4.88 175866 733303 4.17

mcf 197 531 2.70 891 5224 5.86 672 3485 5.19

gobmk 16723 46883 2.80 46915 215614 4.60 42529 168944 3.97

hmmer 6797 21175 3.12 18103 92474 5.11 16594 73117 4.41

sjeng 2171 7690 3.54 7701 38343 4.98 6389 29280 4.58

libquantum 915 2702 2.95 1826 8631 4.73 1904 7627 4.01

h264ref 6291 25967 4.13 21650 149233 6.89 18307 108169 5.91

GEOMEAN 3287 11894 3.62 10314 58572 5.68 8985 45069 5.02

Table 1: The effects of obfuscating transformations on control flow graph. Ecori and Ecobf represent the number of original edges,

obfuscated edges in original and obfuscated call graphs respectively, while Eaori and Eaobf represent the number of all original and

obfuscated edges in control flow graph. Nori and Nobf are the numbers of basic blocks in the original and obfuscated programs,

respectively.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

401.bzip2

403.gcc

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

GEOMEAN

O
v
e
rh

e
a
d

invert-level1+level2+ld-bogus

invert-level1+level2

invert-level1

Figure 11: A decomposition of performance overhead of BOSH

on SPECINT2006 under full program obfuscation.

mizations such as instruction scheduling and register allocation, as
well as the variety in the proportion of randomly selected branches
from the hot trace.

Note that there is some associated overhead due to the insertion
and maintenance of aliased pointer variables, as well as the impact
of obfuscation on compiler optimizations. Further, the added bogus
code also affects the branch predicator. Thus, even obfuscating a
small percentage (i.e., 10%) of control transfer still brings about
6% performance slowdown. The profiling results using oprofile
show that, there is a 39% increase (from 11,430,369 to 15,901,799)
in the number of branch mis-predications for bzip2 even only 10%
of the control flow transfer is converted using NaT tokens.

To further understand the source of the overhead, we present
a decomposed overhead for the obfuscation transformations: in-
verting conditional branches and inserting the level-1 bogus code 5

(invert-level1), inserting level-2 bogus code (level2) and converting
normal ld into speculative one and adding bogus code (ld-bogus).
As shown in Figure 11, the step invert-level1 brings the most per-
formance overhead (a mean of 18.7%), due to the fact that the
level1 bogus code is still in the code execution path. Inserting the

5We cannot measure the cost of branch inversion standalone since
gcc will convert it back if there is no further transformation.

second level of bogus code does not add much overhead (a mean
of 3.5%) since the code are actually not executed. Converting ld

to ld.s does not bring performance overhead but adding the bogus
code after ld.s causes a 4.7% increase in performance overhead.
Nevertheless, the overall performance overhead is still small and
thus the obfuscation transformations are still cheap enough to be
applied for production runs.

5.2.2 Code Size Expansion

Application Orig.(Kb) Obfusc.(Kb) Ratio

bzip2 168.76 889.55 5.27

gcc 8636.50 23198.89 2.69

mcf 54.87 123.04 2.24

gobmk 7014.04 10692.10 1.52

hmmer 984.66 2731.95 2.77

sjeng 2882.20 3540.64 1.23

libquantum 111.93 289.92 2.59

h264ref 1992.95 5322.87 2.67

GEOMEAN 878.62 2118.21 2.41

Table 2: Impact of obfuscation on the increase of code size in kilo-

byte.

Application Torig(s) Tobf (s) Ratio

bzip2 14.08 240.31 17.07

gcc 634.24 1549.36 2.44

mcf 3.05 3.98 1.30

gobmk 154.25 256.06 1.66

hmmer 61.85 92.11 1.49

sjeng 28.06 44.70 1.59

libquantum 6.78 8.97 1.32

h264ref 139.08 298.30 2.14

GEOMEAN 40.24 89.67 2.23

Table 3: Impact of obfuscation on the compilation time in second.

The impact of full program obfuscation on the size of binary
code is shown in Table 2. We can see that the code size factor
ranges from 1.23 (sjeng) to 5.27 (bzip2), with a mean factor of
2.41. The increase of code size mainly comes from the added bo-
gus code, as well as a little increase from converting a conditional
branch to an unconditional one.



5.2.3 Compilation Time

We also measured the impact of obfuscating transformations on
the compilation time for full program obfuscation. As shown in Ta-
ble 3, the compilation time factor ranges from 1.30 (mcf) to 17.07
(bzip2), with a mean of 2.23. The increase of compilation time is
dominated by the proportion of branches. The bzip2 has a much
higher increase than others due to the extremely long time (e.g.,
from 3.57s to 45.03s in compiling compress.c) in obfuscating func-
tions which are full of branches.

6. CONCLUSION
In this paper, we proposed a flow-sensitive control obfuscation

scheme that exploits the microprocessor support for information
flow tracking. The proposed system, namely BOSH, makes novel
use of tags as opaque predicates to obfuscate control flow graph
and insert bogus code, instead of traditional uses as oracles to de-
tect security exploits or speculation failures. We have implemented
a working prototype based on Itanium processors, by exploiting the
hardware support for deferred exception propagation and user-level
exception handling. Experimental results show that BOSH can ob-
fuscate the whole control flow graph, and is resilient to a state-of-
the-art reverse engineering tool (i.e., IDA pro). Performance results
show that BOSH incurs only small performance degradation even
for full program obfuscation on SPECINT2006. The incurred code
size expansion and compilation time increase are also modest.

7. REFERENCES

[1] H. Chen, X. Wu, L. Yuan, B. Zang, P. Yew, and F. Chong.
From Speculation to Security: Practical and Efficient
Information Flow Tracking Using Speculative Hardware. In
Proc. ISCA, pages 401–412, 2008.

[2] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding data lifetime via whole
system simulation. In Proc. USENIX Security Symposium,
pages 321–336, 2004.

[3] S. Chow, Y. Gu, H. Johnson, and V. Zakharov. An approach
to the obfuscation of control-flow of sequential computer
programs. In Proc. Information Security Conference, pages
144–155, 2001.

[4] C. Cifuentes and K. Gough. Decompilation of Binary
Programs. Software - Practice and Experience,
25(7):811–829, 1995.

[5] C. Collberg, C. Thomborson, and D. Low. A taxonomy of
obfuscating transformations. University of Auckland

Technical Report, 170, 1997.

[6] C. Collberg, C. Thomborson, and D. Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. In Proc.

POPL, pages 184–196, 1998.

[7] J. Crandall and F. Chong. Minos: Control Data Attack
Prevention Orthogonal to Memory Model. In Proc. Micro,
pages 221–232, 2004.

[8] W. Cui, J. Kannan, and H. Wang. Discoverer: Automatic
protocol reverse engineering from network traces. In 16th

Usenix Security Symposium, 2007.

[9] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: a flexible
information flow architecture for software security. In Proc.

ISCA, pages 482–493, 2007.

[10] datarescue. IDA Pro. http://www.datarescue.com/idabase/.

[11] M. Gagnon, S. Taylor, and A. Ghosh. Software Protection
through Anti-Debugging. IEEE SECURITY & PRIVACY,
pages 82–84, 2007.

[12] J. Ge, S. Chaudhuri, and A. Tyagi. Control flow based
obfuscation. In Proc. DRM, pages 83–92, 2005.

[13] J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder, and
R. Zahir. Introducing the IA-64 architecture. IEEE Micro,
20(5):12–23, 2000.

[14] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static
Disassembly of Obfuscated Binaries. In Proc. Usenix

Security Symposium, 2004.

[15] D. Larochelle and D. Evans. Statically detecting likely buffer
overflow vulnerabilities. In Proc. USENIX Security

Symposium, 2001.

[16] T. Leek, G. Baker, R. Brown, M. Zhivich, and R. Lippmann.
Coverage Maximization Using Dynamic Taint Tracing.
Technical Report 112, MIT Lincoln Laboratory, 2007.

[17] R. Lemos. Tracking code red.
http://news.cnet.com/2009-1001-270471.html, visited May,
2009, 2001.

[18] C. Linn and S. Debray. Obfuscation of executable code to
improve resistance to static disassembly. In Proc. CCS,
pages 290–299, 2003.

[19] A. Majumdar, S. Drape, and C. Thomborson. Slicing
obfuscations: design, correctness, and evaluation. In Proc.

DRM, pages 70–81, 2007.

[20] G. Myles and C. Collberg. Software watermarking via
opaque predicates: Implementation, analysis, and attacks.
Electronic Commerce Research, 6(2):155–171, 2006.

[21] S. Mysore, B. Mazloom, B. Agrawal, and T. Sherwood.
Understanding and visualizing full systems with data flow
tomography. In Proc. ASPLOS, pages 211–221, 2008.

[22] T. OGISO, Y. SAKABE, M. SOSHI, and A. MIYAJI.
Software Obfuscation on a Theoretical Basis and Its
Implementation. IEICE TRANSACTIONS on Fundamentals

of Electronics, Communications and Computer Sciences,
86(1):176–186, 2003.

[23] J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma, Q. Shao,
and Y. Zhang. Experience with software watermarking. In
Proc. ACSAC, pages 308–316, 2000.

[24] I. Popov, S. Debray, and G. Andrews. Binary Obfuscation
Using Signals. In Proc. Usenix Security Symposium, 2007.

[25] G. Suh, J. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. In Proc.

ASPLOS, pages 85–96, 2004.

[26] S. Udupa, S. Debray, and M. Madou. Deobfuscation:
Reverse Engineering Obfuscated Code. In Proc. Working

Conference on Reverse Engineering, pages 45–54, 2005.

[27] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic.
FlexiTaint: Programmable Architectural Support for
Efficient Dynamic Taint Propagation. In Proc. HPCA, 2008.

[28] C. Wang, J. Davidson, J. Hill, and J. Knight. Protection of
software-based survivability mechanisms. In Proc. DSN,
2001.

[29] M. Weiser. Program slicing. In Proc. ICSE, pages 439–449,
1981.

[30] C. Zou, W. Gong, and D. Towsley. Code red worm
propagation modeling and analysis. In Proc. CCS, pages
138–147, 2002.


