
Experimental Study of FPT Algorithms for the

Directed Feedback Vertex Set Problem

Rudolf Fleischer, Xi Wu, and Liwei Yuan?

Fudan University; Software School, CSE Department and IIPL; Shanghai, China
{rudolf,wuxi,yuanliwei}@fudan.edu.cn

Abstract. We evaluate the performance of FPT algorithms for the di-
rected feedback vertex set problem (DFVS). We propose several new data
reduction rules for DFVS. which can significantly reduce the search space.
We also propose various heuristics to accelerate the FPT search. Finally,
we demonstrate that DFVS is not more helpful for deadlock recovery (with
mutex locks) than simple cycle detection.

1 Introduction

In the minimum feedback vertex set problem (FVS) we are given a graph G =
(V, E) and we want to find a minimum number of nodes in V whose removal
would make the graph acyclic. The problem is NP-complete on undirected (UFVS)
and directed (DFVS) graphs. Since DFVS has some applications in compiler op-
timization [14, 16] and database deadlock recovery (see [4]), it is important to
solve this problem quickly. Therefore, the parameterized versions of FVS have
recently been studied. In k-DFVS the input is a pair (G, k), where G is the graph
and k > 0 is a parameter, and the task is to either find a set of at most k

nodes blocking all cycles or to report that such a set does not exist. A parame-
terized problem is fixed parameter tractable (see [6]) if it can be solved in time
O(f(k)poly(n)), where n is the number of nodes of G and f is an arbitrary com-
putable function. Intuitively, a problem is in the class FPT if it can be solved
efficiently for fixed parameter k. We denote the runtime by O?(f(k)), omitting
the less interesting polynomial dependency on n. Obviously, we do not expect
f(k) to be polynomial for NP-hard problems.

If we can reduce (G, k) in time g(k) to an equivalent parameterized problem
(H, k′), where g is some computable function and k′ only depends on k, such
that the size of H is bounded by some function h(k), then (H, k′) is a kernel of
(G, k). It is known that being in FPT is equivalent to having a kernel [6]. While
a polynomial-size kernel immediately implies the existence of an FPT algorithm

? According to international standard, the authors are listed in alphabetic order; first-
author order would be X. Wu, L. Yuan, and R. Fleischer. This research was sup-
ported by the Shanghai Leading Academic Discipline Project (project number B114),
the Shanghai Committee of Science and Technology of China (nos. 08DZ2271800
and 09DZ2272800), and the Robert Bosch Foundation (Science Bridge China
32.5.8003.0040.0).

(reduce the problem to its kernel, then solve the problem on the kernel by brute-
force search), it is not known how to derive a polynomial-size kernel from a given
FPT algorithm.

Wang et al. [16] first observed that DFVS is more difficult than UFVS. Bod-
laender showed that UFVS is in FPT [1], and Thomasse recently gave a quadratic
size kernel [15]. For planar graphs, there is even a linear size kernel [2]. On the
other hand, the FPT status of DFVS had been an open problem for fifteen years
[5] until Chen et al. recently proposed an FPT algorithm [4] based on branching.
It is not known whether the problem has a polynomial size kernel.

Our work. We implemented the DFVS algorithm by Chen et al. [4] and tested
it on random graphs with various values for edge density ed and optimum DFVS

size k. Fig. 1(a) shows the runtime of the algorithm for graphs with ed = 2
and k = 2, 4, 6, 8. As expected, the performance degrades dramatically when
the parameter k increases; for k = 8 we often observed a time-out (set to three
hours in our experiments), in particular on low-density graphs. Data reduction
rules are very attractive to speed up FPT algorithms because no branching is
involved and they may sometimes lead to a good kernelization. Inspired by the
recent kernelization techniques for UFVS by Thomasse [15], we propose four new
data reduction (preprocessing) rules for DFVS: Dummy Nodes, Chaining Nodes,
Flower, and Shortcut. We achieved another speed-up by starting Chen’s FPT
search not in an arbitrary initial configuration. We propose three heuristics to
choose a good initial configuration: a simple greedy heuristic based on picking
large-degree nodes, and two more sophisticated heuristics based on computing
good approximations to the optimal DFVS solution [7].

We evaluated the performance of our data reduction rules and heuristics on
randomly generated graphs with varying number of nodes, edge density, and
optimal solution size. In particular, we analyzed the impact of each parameter
and heuristic on the total runtime. We measured runtime, kernel size (since we
do not have a kernelization yet, we actually measure the maximum problem size
sent to standard min cut when solving the skew separator problem, an important
step in Chen’s algorithm [4]), memory usage, and recursion depth. Our data
suggest that Chaining Nodes, Flower, and Shortcut reductions can significantly
reduce the FPT search space enabling us to solve DFVS on graphs that are several
orders of magnitude larger than what Chen’s algorithm can handle (see Fig. 1).
Overall, we think best approach for solving DFVS is to first apply our reduction
rules, then use the Big-Degree heuristic to compute an initial configuration for
Chen’s FPT algorithm, which is then used to solve the problem.

When we started this study, our main goal was actually to evaluate the algo-
rithms on real data from the purported main application of DFVS [4, 7], namely
deadlock recovery in multi-thread computing environments. However, due to re-
strictions of the parallel programming model, cycle detection, rather than DFVS

search, is already sufficient for efficient deadlock recovery. For example, it was
reported in a recent paper on deadlock immunity [10] that cycle detection only
incurs a loss of efficiency of 6% in state-of-the-art multi-core systems, so there
is no need to employ complicated FPT algorithms.

Structure of the paper. In Section 2, we give some basic definitions. In Section 3,
we briefly review Chen’s FPT algorithm for DFVS and propose our new reduction
rules and heuristics to speed-up the algorithm. In Section 4 we discuss implemen-
tation details of the algorithms, the random graph generator, and we present and
discuss our experimental data. In Section 5 we discuss the suitability of DFVS for
the deadlock recovery problem for concurrent threads. We conclude the paper
in Section 6 with some thoughts about future work.

2 Preliminaries

Let G = (V, E) be a directed graph with nodes V and edges E. A simple path
is a path with no repeated nodes. Two paths are internally disjoint if no node
appears on both paths except maybe the end nodes. A directed cycle is a path
ending at its start node. Similarly, a simple cycle is cycle in which no node
appears twice. A directed graph is acyclic (DAG) if and only if it contains no
directed cycle.

For a node u, a u-flower of order k is a set of k directed cycles that are
pairwise disjoint except for their common node u. We call these cycles petals. To
compute u-flowers in G, we split u into two nodes s and t, with s incident to all
outgoing edges and t to all incoming edges. Then, the maximum flower size at u

equals the maximum number of node disjoint paths from s to t in G, which we
can easily compute using standard min-cut techniques. and Menger’s Theorem
for directed graphs [3] which states that the maximum number of internally
disjoint paths from s to t equals the size of a minimum (s, t) node cut if s is not
adjacent to t. In the following, we use petal(u) to denote the maximum flower
size at u. Note that petal(u) = 1 implies that there exists another node v such
that all cycles containing u also contain v (i.e., v dominates u); v is the single
cut node between s and t in Menger’s Theorem.

3 Chen’s Algorithm and Speed-Ups

Chen’s algorithm is based on iterative compression [9]. Given an input (G, k),
we arbitrarily choose an induced (k+1)-node subgraph H of G and an arbitrary
k-node subset I of the nodes in H . Note that I is a k-node feedback vertex set
of H . Then we repeatedly add another node of G to H and I , until H = G. Note
that whenever we just added a new node, I is a (k +1)-node feedback vertex set
of H . We then use the subroutine FVS-Reduction to compress I into a k-node
feedback vertex set of H . Eventually, H = G and I is a k-node feedback vertex
set of G. If in some iteration we cannot find a k-node feedback vertex set for H ,
we conclude that G does not have a k-node feedback vertex set. We can improve
the runtime in two ways: use data reduction rules, and use heuristics to find a
good initial configuration for the algorithm.

Data reduction rules. We preprocess the given graph by applying different rules
(in arbitrary order and as long as possible) to reduce the size of the graph and

the parameter k. Essentially, this reduces the search space for the FPT algorithm
later, whose runtime is exponential in k. Initially, we set the feedback vertex set
I = ∅.

Rule 1 (Self-Loop) If u has a self-loop, we add u to I , decrease k by 1, and
delete u and adjacent edges from the graph.

Rule 2 (Edge Canonicalization) If there are two nodes u and v with multiple
edges from u to v we remove all but one edge.

Rule 3 (Dummy Nodes) If there is a node u without incoming edges or without
outgoing edges, then we remove u and its incident edges from the graph.

Rule 4 (Chaining-Nodes) If there is a node u such that (v, u) ((u, v)) is the
only incoming (outgoing) edge, then we merge u with v.

It is easy to see that these four rules are safe, i.e., the reduced instance has
a solution if and only if the original problem has a solution. Rule 1 and Rule
2 are already implicit in Chen’s algorithm. Rule 3 and Rule 4 are the directed
versions of similar rules for the undirected case [15]. The next rules are new.

Rule 5 (Shortcut) If there is a node u with petal(u) = 1, then we delete u and
all incident edges from the graph, but we add all shortcuts bypassing u as
new edges, i.e., for any path v → u → w we add the edge (v, w).

Rule 6 (Flower) If there exists a node u with |petal(u)| > k, we add u to I ,
decrease k by 1, and delete u and adjacent edges from the graph.

Rule 5 is safe because any node u with petal(u) = 1 is dominated by another
node (see above). Rule 6 is safe because not choosing u for the feedback vertex
set would imply we must take one node in each of the at least k + 1 disjoint
cycles through u. Note that Rule 4 is actually a special case of Rule 5. However,
Rule 4 can be tested in constant time, while Rule 5 requires a min-cut compu-
tation. Therefore, we list them as two rules. Rule 6 is the directed version of
the the undirected flower reduction proposed by Thomasse [15]. In contrast to
the undirected case, this rule can be tested efficiently using standard min-cut
techniques.

Note that we have reduction rules for nodes with small petal size and large
petal size, but no rules for petal size between 2 and k. Such rules might be
necessary to find a true kernelization for DFVS.

Initial Heuristics. It may be helpful to choose the initial subgraph H and its
k-node feedback vertex set I more carefully. This was already suggested by
Chen [4]. Assume a heuristic gives us a set F of nodes whose removal makes
G acyclic. If |F | ≤ k, we can choose H = G and I = F and we are done.
Otherwise, we pick a random k-node subset F0 of F and start Chen’s algorithm
with H = G − (F − F0) and I = F0. Clearly, F0 is a feedback vertex set of

H , and if F is a good approximation to the optimal solution, H may be close
to G. We propose three heuristics: Chen et al. had suggested to use [4], which
unfortunately exhibited the worst performance in our experiments.

Heuristic 1 (Big Degree) We greedily add nodes of maximum undirected de-
gree (i.e., indegree + outdegree) to F until the graph becomes acyclic.

Heuristic 2 (Fractional Approximation) We first compute a (1+ε)-approximation
for fractional DFVS [7], then greedily add nodes with heaviest fractional
weight to F until the graph becomes acyclic.

Heuristic 3 (Full Approximation) We compute a DFVS approximation F with
factor O(min{log τ∗ log log τ∗, log n log log n}) [7], where τ∗ is the cost of a
minimum fractional feedback vertex set.

4 Experiments

We used a PC with Intel(R) Xeon(TM) CPU (3.20GHz), 4 processors, 1 core
per processor. The machine had 2 GB main memory (DDR2 SDRAM), 2MB L2
cache memory, and an 80GB serial ATA hard drive. We tested the algorithms
on random graphs (see Section 4.1). For each set of parameters we used ten
random graphs and recorded minimum, maximum, and average performance.
For all runs of the algorithms we set a time-out threshold of three hours. We
implemented the algorithms in C++ using LEDA-6.2 [12] on the Fedora Core

8 operating system. We compiled the programs with g++-4.1.2 -O3. We have
approximately 4,000 LOC in total.

For Chen’s algorithm, we found it non-trivial to map some of the basic graph
operations to program code. For example, there is no way for two different graphs
in LEDA to share common nodes, which is required when we want to compute
induced graphs. We also found that some key operations common in FPT al-
gorithms are not well supported by LEDA. For example, FPT algorithms often
apply kernelization rules and then use brute-force search on the kernel to solve
the problem. The brute-force search is usually done by iterating over all subsets
of size k or each topological order of the graph. Therefore, we extended LEDA

with two interfaces:

– bool foreach subset(list<node> &sub, graph &G,

subset prop func pf, void *pars)

– bool foreach topord(list<node> &sub, graph &G,

topord prop func pf, void *pars)

In the subset enumerator, sub specifies a subset of nodes in G. It comes
together with a property function that tests whether the subset has a certain
property. Each time we generate a new subset, we call the property function
with the new subset and the user-supplied parameters pars. This function will

stop and return true once the property function returns true. If all subsets have
been tried, we simply return false to indicate that for any subset of sub the
property cannot be satisfied.

In subsection 4.1, we first briefly discuss how we generated the random graph
instances. Then we present our experimental data in four subsections. Complete
experimental data and the source code of our programs are available online [8].
In Section 4.2 we present data on the runtime performance and kernel size of
Chen’s original algorithm. In Section 4.3 we show the effectiveness of our new
data reduction rules in improving the FPT search and reducing large input
instances. In Section 4.4 we evaluate and compare three heuristics to obtain an
initial configuration for Chen’s algorithm. Finally, in Section 4.5 we evaluate the
runtime performance of Chen’s algorithm with respect to different parameters k

for a graph with fixed optimum solution.

4.1 The Random Graph Generator

Our goal was to generate sufficiently difficult ”random” instances while still
precisely controlling three parameters: n, the number of nodes in the graph; k,
the size of the optimum DFVS solution; and ed, the edge density (m = ed · n).
It seems difficult to generate truly random graphs with these parameters fixed,
so we developed our own methods to generate graphs that seem to be quite
random. We generate the graphs in two stages. First, we generate a random
spanning tree [17] from which we then obtain a random connected DAG [13].
Finally, we add cycles to the graph, which poses two challenges: how to precisely
control the minimum feedback vertex set size, and how to ensure that the newly
generated graph is difficult to solve. We first randomly choose k nodes as the
optimum solution, and then generate k node-independent cycles passing through
each of them. We do not generate self-loops since they can easily be removed.
Note that this method cannot generate k node-independent cycles for k > n

2
.

To create more overlapping cycles, we randomly fix a topological order for the
nodes not in the solution. Each time we generate a cycle, we first randomly
choose a subset A of the solution set and a subset B of the remaining nodes.
We keep the nodes in B in their topological order when building cycles through
these nodes. This ensures that the optimum solution size cannot exceed k. To
ensure that our graphs are difficult to solve, we randomly add more cycles until
we reach the required edge density ed, where the number of edges in a cycle is
within 1

4
of the total edge bound. Also, we try not to generate cycles that are

too big by limiting the cycle size to at most n

4
. Although we know one optimal

solution of the generated graphs, they usually did not have a unique solution in
our experiments.

4.2 Chen’s Algorithm

Since FPT search scales poorly with n and k, we only considered graphs with
n = 40, 60, 80, . . . , 200, k = 2, 4, 6, 8, and edge density ed = 2, 3, 3.5, 4. We
generated ten graphs for each triple (n, k, ed). Fig. 1(a) shows the average search

 0

 100

 200

 300

 400

 500

 600

 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 S
ea

rc
h

Ti
m

e
(S

ec
on

d)

Number of Nodes

K = 2
K = 4
K = 6
K = 8 Time Out !

(a) No reductions.

 0

 100

 200

 300

 400

 500

 600

 700

 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 S
ea

rc
h

Ti
m

e
(S

ec
on

d)

Number of Nodes

K = 2
K = 4
K = 6
K = 8

(b) With our new reductions.

Fig. 1: Runtime of Chen’s algorithm, ed = 2.0. Note that the top graph in (a) corre-
sponds to the case k = 6 (because k = 8 never finished within three hours), while the
top graph in (b) is for the case k = 8.

time as a function of n and k for ed = 2.0. For all experiments, the memory usage
was constant with approximately 10MB.

We see from the data that the runtime of the algorithm scales poorly with
k, which is typical for FPT algorithms. For k = 8 and ed = 2.0, the algorithm
never finished within 3 hours. For ed = 3.0 and k = 8, the algorithm showed
time-outs when n was larger than 140.

It seems that the runtime is not monotonely increasing in n, probably because
it is dominated by the exponential dependency on k. The high runtime for low
values of n (for example, (40, 8, 2.0)) is due to the fact that these graphs have
many independent cycles, and Chen’s algorithm seems to perform poorly on
such graphs. A possible explanation may be found in the iterative compression
technique. If we have many nodes on a few cycles and must add an additional
node which is on a not yet blocked independent cycle, we must keep the new
node and kick out one of the previously chosen nodes. Identifying such a node
might be time-consuming.

Also, the runtime does not increase monotonely in the edge density. The
algorithm can still quickly solve all instances with small parameter k when the
number of edges increases significantly. Also, for bigger k, the runtime does
not increase monotonely with the number of edges. For example, for k = 8,
the problem becomes most difficult for the FPT algorithm when ed = 2. Most
graphs time-out within three hours for this configuration.

As we do not have kernelization rules for DFVS, we evaluated the kernel size
by recording the maximum size of an instance of the standard min cut problem
when solving the skew separator problem (in Chen’s algorithm). However, we
found this size is roughly the same as the size of the original graph (the deviation
is usually two or three nodes).

 0

 50

 100

 150

 200

 250

 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 R
ed

uc
ed

 S
iz

e

Number of Nodes

K = 2
K = 4
K = 6
K = 8

(a) Reduced size, small k.

 0

 50

 100

 150

 200

 250

 300

 350

 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 R
ed

uc
ed

 S
iz

e

Number of Nodes

K = 20
K = 40
K = 60
K = 80

(b) Reduced size, large k.

 0

 5

 10

 15

 20

 400 600 800 1000 1200 1400 1600 1800 2000

P
re

pr
oc

es
si

ng
 T

im
e

(S
ec

on
d)

Number of Nodes

K = 2
K = 4
K = 6
K = 8

(c) Preprocessing time.

Rules k = 4 k = 40

Chain 607 377

Dummy 785 679

Cut 996 1000

Chain+Dummy 522 377

Chain+Cut 366 377

Dummy+Cut 151 377

Dummy+Dummy+Cut 0 377

(d) Reduced size by combining different
rules, n = 1000, ed = 3.0.

Fig. 2: Chen’s algorithm with data reductions, ed = 2.0.

4.3 Data Reduction Rules

Fig. 1(b) shows the average runtime of Chen’s algorithm after applying the new
reduction rules for the same graphs as in Section 4.2. Now we can solve all the
graphs quickly (the average longest time was 10 minutes, most often even less
than 1 minute). However, the runtime is still not monotone with regard to n

or ed; it is actually closely related to the reduced size after preprocessing. For
example, there is a peak in the runtime when ed = 2.0 and n = 100. For this
configuration, some instances got solved directly by preprocessing, while others
needed hundreds of seconds to be solved. In particular, there is one instance with
a big kernel (33 nodes) which was only solved after more than 2, 000 seconds.

We designed two more experiments to further test the power of data reduc-
tions. In the first experiment, we kept the small values for k and varied n between
400 and 2, 000, with step length 200. Fig. 2(a) and 2(c) show the average size
reductions and preprocessing times, respectively. Surprisingly, we found that the
reduction rules could directly handle most of the input instances when ed > 2.
There are two possible explanations: The parameter k may be too small, or
our “random” graphs actually have many overlapping cycles. In both cases, the
Flower reduction could reduce the input size considerably. The preprocessing

 0

 2000

 4000

 6000

 8000

 10000

 40 60

A
ve

ra
ge

 S
ea

rc
h

Ti
m

e
(S

ec
on

d)

Number of Nodes

NO
Big-Degree
Fractional
Full-Approximation

(a) Heuristics.

 0

 100

 200

 300

 400

 500

 600

 40 60

A
ve

ra
ge

 S
ea

rc
h

Ti
m

e
(S

ec
on

d)

Number of Nodes

NO
Big-Degree
Fractional
Full-Approximation

(b) Chen’s algorithm after heuristic.

Fig. 3: Runtimes of heuristics for Chen’s algorithm, k = 8 and ed = 3.0.

time grows linearly in n and ed. On the average, it was just 3 minutes for all
graphs together.

In the second experiment, we varied k in {20, 40, 60, 80} for the same n as in
the first experiment. Fig. 2(b) shows the average reduced size for these configura-
tions. We observe that for fixed edge density the reduced size scales linearly with
the number of nodes, which indicates that our reduction rules work consistently
for different graph sizes. Also, the reduced size increases with increasing edge
density. This is quite different from the first experiment where the preprocessing
could directly solve almost all graphs when ed is large. The reason is that the
Flower reduction rule does not work well in these cases if k gets larger. Thus, it
would be important to devise reduction rules that work well for relatively large
parameter k as well as large edge density.

Individual reduction rules. We tried to find out which rules are more important
than others. We studied two groups of graphs, the first group had parameters
n = 1000, k = 4, ed = 3.0, and the second group had n = 1000, k = 40,
ed = 3.0. We evaluated three types of rules: Chain, Dummy, and Cut. Type Chain
rules consisted of the Chaining Nodes and Shortcut rules; Type Dummy rules
contained the Dummy Nodes rule and the reduction that removes all nodes with
petal size 0; Type Cut rules were just the Flower rule. Table 2(d) summarizes
the average reduced sizes for these two configurations. We see that the Cut rules
do not reduce the graph significantly, but they are useful in determining the
nodes in the minimum feedback vertex cover. For example, the Cut rules may
reduce a graph from 1000 to 996 nodes when k = 4, but these 4 nodes are in the
feedback vertex set, so we have already solved the problem even though there are
still 996 unprocessed nodes. The Flower rules might help other rules to further
reduce the graph. Our data show that the graphs are reduced significantly when
we combine Chain or Dummy rules with Flower rules. This is because a Flower
rule actually selects a node for the feedback vertex set and then deletes it from
the graph, which may trigger other rules. The Flower rule becomes useless when
k grows, because graphs usually do not have large flowers.

 0

 50

 100

 150

 200

 250

 300

 350

 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 S
ea

rc
h

Ti
m

e
(S

ec
on

d)

Number of Nodes

K = 2
K = 4
K = 6
K = 8

Fig. 4: FPT search time with preprocess-
ing and Big-Degree heuristic.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 8 20 40 60 80 100

A
ve

ra
ge

 S
ea

rc
h

Ti
m

e
(S

ec
on

d)

Parameter K (Optimum Size = 8)

K = 2

Fig. 5: The FPT search time with re-
spect to different parameter k.

4.4 Heuristics for the Initial Configuration

We evaluated the three heuristics mentioned in Section 4 to find a good initial
configuration for Chen’s algorithm. Since the FPT algorithm does not scale
well with n and k and the approximation algorithms are very slow even on
small graphs, we only considered graphs with n = 20, 25, 30, . . . , 60 nodes, with
k ∈ {2, 4, 6, 8} and ed = 3.0.

Fig. 3 shows the runtimes for k = 8 (including the times for no heuristic).
The graphs would be similar for other values of k. Note that we distinguish
between runtime of the heuristic and runtime of Chen’s algorithm afterwards.
The heuristics seem to become very useful for larger parameters k. On all our
graphs, the Big-Degree heuristic achieved the most significant acceleration (4x
to 50x speedup). Moreover, the Big-Degree heuristic (which usually takes only
a few seconds) runs thousands of times faster than Fractional Approximation
and Full-Approximation (which usually need thousands of seconds). Overall, we
conclude that the best approach for solving DFVS is to first apply our reduction
rules, then use Big-Degree to compute the initial configuration, and then use
Chen’s algorithm [4] to solve the problem. For example, Fig. 4 shows that, with
the Big-Degree heuristic, we can achieve another speed-up of 2−−3x compared
to reduction rules without heuristic (Fig. 1(b)).

4.5 The Impact of the Parameter k

Intuitively, we may quickly find a feedback vertex set of size k if k is much larger
than the optimal one. We may also quickly reject the input if k is much smaller
than the optimal parameter. To test this hypothesis, we generated graphs with
100 nodes for k = 8 and ed = 3.0. Then we used Chen’s algorithm to search a
feedback vertex set of size k = 2, 4, 6, 8, 10, . . . , 98. Fig 5 summarizes the average
search times for this experiment. As expected, the runtime reaches its peak when
the parameter k is near the size of the minimum feedback vertex set. The runtime
is quite fast when k is much larger or much smaller than the optimum.

5 Deadlock Detection

Deadlock recovery in concurrent programs has always been considered an im-
portant application of DFVS [4, 7]. Indeed, deadlock recovery is a very important
topic in our modern multi-core/many-core computing era. Solving the concur-
rency problem has recently seen tremendous research interest in operating sys-
tems, programming languages and computer architecture communities.

For simplicity of analysis we mainly focus on mutex locks in the POSIX
Thread library (Pthread). We will argue that, with the restrictions of the pro-
gramming model, DFVS is not more helpful than cycle detection for deadlock
recovery. This proposition is further confirmed by a report on a deadlock immu-
nity system [10] in a recent systems conference.

In a concurrent program, the nodes of a Resource Allocation Graphs (RAG)
are resources and threads. Resources are simply mutex locks. There are three
types of edges in a RAG: request, grant and own. The request and grant edges are
edges from thread to lock, while the own edges go from lock to thread. request
edge means a thread is requesting a lock, and grant edge means the thread
library allows the thread to wait on the lock (note that the thread may yield
its execution to another one before being allowed to wait on the resource). The
own edge from lock to thread means the thread currently owns this resource
exclusively. A deadlock appears as a cycle in the RAG. In such a cycle, all edges
are exclusively the grant and own edges. One lock can be owned by only one
thread, even for recursive locks, though certain threads could acquire the lock
multiple times. One thread, at one time, can be granted to wait on only one lock
because threads are executed sequentially, and we cannot wait on two resources
simultaneously. Thus, we cannot have overlapping cycles in a RAG, and therefore
simple cycle detection suffices to resolve the deadlocks.

6 Conclusions

We presented a comprehensive experimental study on the feedback vertex set
problem in digraphs. We proposed new data reduction rules to efficiently reduce
the FPT search space. Finally, we demonstrated that DFVS search is not more
helpful than cycle detection in efficient deadlock detection in modern concurrent
systems.

We would like to find better data reduction rules for DFVS, in particular a
polynomial-size kernel. We remark that though UFVS has a small problem kernel,
the parameter k is potentially very large for dense graphs, as in undirected
graphs it is quite easy to have a cycle. We may also study other parameters
than “solution size”, for example, “edge density”. Our reduction rules seem to
perform well when the edge density is low. Better approximation algorithms
for DFVS might also help to speed up the FPT search. We demonstrated that
DFVS is not more helpful than cycle detection in detecting deadlocks with mutex
locks, but there are also other types of locks, such as read/write locks, that
may generate complex overlapping deadlocks. However, we found that other

lock types, for example spin locks, behave essentially the same as mutex locks.
Read/write locks may behave differently. but most thread libraries (e.g. NPTL
(Native POSIX Thread Library) restrict the number of threads in read mode,
and once a thread is waiting in write mode, later read requests are pending until
completion of the write. We are now investigating the practicability of FPT DFVS

algorithms in circuit testing to reduce the hardware overhead required for “scan
registers” [11].

References

1. H. L. Bodlaender. On linear time minor tests with depth first search. Journal of
Algorithms, 14:1–23, 1993.

2. H. L. Bodlaender and E. Penninkx. A linear kernel for planar feedback vertex
set. In Proceedings of the 3rd International Workshop on Parameterized and Ex-
act Computation (IWPEC’08). Springer Lecture Notes in Computer Science 5018,
pages 160–171, 2008.

3. G. Chatrand and L. Lesniak. Graphs & Digraphs. The Wadsworth and Brooks/Cole
Mathematics Series, 2. edition, 1986.

4. J. Chen, Y. Liu, S. Lu, B. Sullivan, and I. Razgon. A fixed-parameter algorithm for
the directed feedback vertex set problem. Journal of the ACM, 55(5):1–19, 2008.

5. R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness
I: basic results. SIAM Journal on Computing, 24:873–921, 1995.

6. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,
Heidelberg, 1999.

7. G. Even, J. Naor, and B. Schieber. Approximating minimum feedback sets and
multicuts in directed graphs. Algorithmica, 20:151–174, 1998.

8. R. Fleischer, W. Xi, and L. Yuan. DFVS Project.
http://www.tcs.fudan.edu.cn/rudolf/Projects/DFVS/dfvs.html. 2009.

9. F. Huffner, R. Niedermeier, and S. Wernicke. Techniques for practical fixed-
parameter algorithms. The Computer Journal, 1(51):7–25, 2008.

10. H. Jula, D. M. Tralamazza, C. Zamfir, and G. Candea. Deadlock immunity: En-
abling systems to defend against deadlocks. In Proceedings of the 8th USENIX
Symposium on Operating System Design and Implementation (OSDI’08), pages
295–308, 2008.

11. A. Kunzamann and H. J. Wunderlich. An analytical approach to the partial scan
problem. Journal of Electronic Tesing: Theory and Applications, 1(5):163–1741,
1990.

12. LEDA: A library of the data types and algorithms of combinatorial computing.
http://www.mpi-inf.mpg.de/LEDA/.

13. G. Melancon, I. Dutour, and M. Bousquet-Melou. Random generation of directed
acyclic graphs. Technical report, CWI Amsterdam, 2006. www.cwi.nl/InfoVisu.

14. H. Seidl. Personal communication, 2000.
15. S. Thomasse. A quadratic kernel for feedback vertex set. In Proceedings of the

20th ACM-SIAM Symposium on Discrete Algorithms (SODA’09), pages 115–119,
2009.

16. C.-C. Wang, E. L. Lloyd, and M. L. Soffa. Feedback vertex sets and cyclically
reducible graphs. Journal of the ACM, 32(2):2960–313, 1985.

17. D. B. Wilson. Generating random spanning trees more quickly than the cover
time. In Proceedings of the 28th ACM Symposium on the Theory of Computation
(STOC’96), pages 296–303, 1996.

