
Proc. 21st CPM, 2010

Extended Islands of Tractability for
Parsimony Haplotyping⋆

Rudolf Fleischer1, Jiong Guo2, Rolf Niedermeier3, Johannes Uhlmann3, Yihui Wang1,
Mathias Weller3, Xi Wu1

1 School of Computer Science, IIPL, Fudan University, Shanghai, China
[rudolf,yihuiwang,wuxi]@fudan.edu.cn

2 Universität des Saarlandes,
Campus E 1.4, D-66123 Saarbrücken, Germany

jguo@mmci.uni-saarland.de
3 Institut für Informatik, Friedrich-Schiller-Universität Jena,

Ernst-Abbe-Platz 2, D-07743 Jena, Germany
[rolf.niedermeier,johannes.uhlmann,mathias.weller]@uni-jena.de

Abstract. Parsimony haplotyping is the problem of finding a smallest size set of
haplotypes that can explain a given set of genotypes. The problem is NP-hard, and
many heuristic and approximation algorithms as well as polynomial-time solv-
able special cases have been discovered. We propose improved fixed-parameter
tractability results with respect to the parameter “size ofthe target haplotype
set” k by presenting anO∗(k4k)-time algorithm. This also applies to the practi-
cally important constrained case, where we can only use haplotypes from a given
set. Furthermore, we show that the problem becomes polynomial-time solvable if
the given set of genotypes is complete, i.e., contains all possible genotypes that
can be explained by the set of haplotypes.

1 Introduction

Over the last few years, haplotype inference has become one of the central problems in
algorithmic bioinformatics [10,2]. Its applications include drug design, pharmacogenet-
ics, mapping of disease genes, and inference of population histories. One of the major
approaches to haplotype inference isparsimony haplotyping: Given a set of genotypes,
the task is to find a minimum-cardinality set of haplotypes that explains the input set of
genotypes. The task to select as few haplotypes as possible (parsimony criterion) is mo-
tivated by the observation that in natural populations the number of haplotypes is much
smaller than the number of genotypes [2]. Referring for the background in molecular
biology to the rich literature (see, e.g., the surveys by Catanzaro and Labbé [2] and
Gusfield and Orzack [10]), we focus on the underlying combinatorial problem. In an
abstract way, a genotype can be seen as a length-m string over the alphabet{0, 1, 2},

⋆ Supported by the DFG, research projects PABI, NI 369/7, and DARE, GU 1023/1, NI 369/11,
NSF China (No. 60973026), Shanghai Leading Academic Discipline Project (project num-
ber B114), Shanghai Committee of Science and Technology of China (nos. 08DZ2271800
and 09DZ2272800), the Excellence Cluster on Multimodal Computing and Interaction
(MMCI), and Robert Bosch Foundation (Science Bridge China 32.5.8003.0040.0).

Proc. 21st CPM, 2010

while a haplotype can be seen as a length-m string over the alphabet{0, 1}. A setH of
haplotypesexplains, or resolves, a setG of genotypes if for everyg ∈ G there is either
anh ∈ H with g = h (trivial case), or there are two haplotypesh1 andh2 in H such
that, for alli ∈ {1, . . . , m},
− if g has letter0 or 1 at positioni, then bothh1 andh2 have this letter

at positioni, and
− if g has letter2 at positioni, then one ofh1 or h2 has letter0 at positioni

while the other one has letter1.

For example,H = {00100, 01110, 10110} resolvesG = {02120, 20120, 22110}. Par-
simony haplotyping is NP-hard, and numerous algorithmic approaches based on heuris-
tics and integer linear programming methods are applied in practice [2]. There is also
a growing list of combinatorial approaches (with provable performance guarantees) in-
cluding the identification of polynomial-time solvable special cases, approximation al-
gorithms, and fixed-parameter algorithms [5,13,14,16,11].

In this work, we contribute new combinatorial algorithms for parsimony haplotyp-
ing, based on new insights into the combinatorial structureof a haplotype solution.
Lancia and Rizzi [14] showed that parsimony haplotyping canbe solved in polyno-
mial time if every genotype string contains at most two letters 2, while the problem
becomes NP-hard if genotypes may contain three letters2 [13]. Sharan et al. [16]
proved that parsimony haplotyping is APX-hard in even very restricted cases and iden-
tified instances with a specific structure that allow for polynomial-time exact solutions
or constant-factor approximations. Moreover, they showedthat the problem is fixed-
parameter tractable with respect to the parameterk =“number of haplotypes in the
solution set”. The corresponding exact algorithm has running timeO(kk

2+km). These
results were further extended by van Iersel et al. [11] to cases where thegenotype ma-
trix (the rows are the genotypes and the columns are them positions in the genotype
strings) has restrictions on the number of2’s in the rows and/or columns. They identi-
fied various special cases of haplotyping with polynomial-time exact or approximation
algorithms with approximation factors depending on the numbers of2’s per column
and/or row, leaving open the complexity of the case with at most two 2’s per column
(and an unbounded number of2’s per row). Further results in this direction have been
recently provided by Cicalese and Milanic̆ [3]. Finally, Fellows et al. [5] introduced
the constrained parsimony haplotyping problemwhere the set of haplotypes may not
be chosen arbitrarily from{0, 1}m but only from a poolH̃ of plausible haplotypes.
Using an intricate dynamic programming algorithm, they extended the fixed-parameter
tractability result of Sharan et al. [16] to the constrainedcase, proving a running time
of kO(k2) · poly(m, |H̃ |). Jäger et al. [12] recently presented an experimental study of
algorithms for computingall possible haplotype solutions for a given set of genotypes,
where the integer linear programming and branch-and-boundalgorithms were sped up
using some insights into the combinatorial structure of thehaplotype solution, as for
example eliminating equal columns from the genotype matrixand recursively decom-
posing a large problem into smaller ones.

Our contributions are as follows. We simplify and improve the fixed-parameter
tractability results of Sharan et al. [16] and Fellows et al.[5] by proposing fixed-
parameter algorithms for the constrained and unconstrained versions of parsimony hap-

2

Proc. 21st CPM, 2010

lotyping that run ink4k ·poly(m, |H̃ |) time, which is a significant exponential speed-up
over previous algorithms. Moreover, we develop polynomial-time data reduction rules
that yield a problem kernel of size at most2kk2 for the unconstrained case. A combina-
torially demanding part is to show that the problems become polynomial-time solvable
if we require that the given set of genotypes is complete in the sense that it contains
all genotypes that can be resolved by some pair of haplotypesin the solution setH .
We call this special caseinduced parsimony haplotyping, and we distinguish between
the case that the genotypes are given as a multiset (note thatdifferent pairs of haplo-
types may resolve the same genotype), or just as a set withoutmultiplicities. We show
that, while there may be an exponential number of optimal solutions in the general
case, there can be at most two optimal solutions in the induced case. For both induced
cases, unconstrained and constrained, we propose algorithms running inO(k ·m · |G|)
andO(k ·m · (|G|+ |H̃|)) time, respectively. Note that these polynomial-time solvable
cases stand in sharp contrast to previous polynomial-time solvable cases [3,14,16,11],
all of which require a bound on the number of2’s in the genotype matrix.

2 Preliminaries and Definitions

Throughout this paper, we considergenotypesas strings of lengthm over the alpha-
bet {0, 1, 2}, while haplotypesare considered as strings of lengthm over the alpha-
bet{0, 1}. If s is a string, thens[i] denotes the letter ofs at positioni. This applies to
both haplotypes and genotypes. Two haplotypesh1 andh2 resolvea genotypeg, de-
noted byres (h1, h2) = g, if, for all positionsi, eitherh1[i] = h2[i] = g[i], or g[i] = 2
andh1[i] 6= h2[i].

For a given setH of haplotypes, letres (H) := {res (h1, h2) | h1, h2 ∈ H} de-
note the set of genotypes resolved byH andmres (H) the multiset of genotypes re-
solved byH (the multiplicity of a genotypeg in mres (H) corresponds to the number
of pairs of haplotypes inH resolvingg). We also writeres (h, H) (mres (h, H)) for
the (multi)set of genotypes resolved byh with all haplotypes inH . We say a setH
of haplotypesresolvesa given setG of genotypes ifG ⊆ res (H), andH inducesG
if res (H) = G. If G is a multiset, we similarly requireG ⊆ mres (H) andmres (H) =
G, respectively. A haplotypeh is consistentwith a genotypeg if h[i] = g[i] for all po-
sitionsi with g[i] 6= 2.

We refer to the monographs [4,6,15] for any details concerning parameterized algo-
rithmics and the survey [9] for an overview on problem kernelization.

We consider the following haplotype inference problems parameterized with the
size of the haplotype setH to be computed:

HAPLOTYPE INFERENCE BYPARSIMONY (HIP):
Input : A setG of length-m genotypes and an integerk ≥ 0.
Question: Is there a setH of length-m haplotypes such that|H | ≤ k andG ⊆
res (H)?

In CONSTRAINED HAPLOTYPE INFERENCE BY PARSIMONY (CHIP) the input
additionally contains a set̃H of length-m haplotypes and the task is to find a set of at
mostk haplotypes fromH̃ resolvingG. Note that withk haplotypes one can resolve at

3

Proc. 21st CPM, 2010

most
(

k

2

)

+ k genotypes. Hence, throughout this paper, we assume that|G| is bounded
by

(

k

2

)

+ k.
In this paper, we introduce the “induced case” of constrained and unconstrained

parsimony haplotyping. To simplify the presentation of theresults for the induced case,
in Section 3 we assume that each genotype contains at least one letter2. Then, we
need two different haplotypes to resolve a genotype. Hence,in the induced case, we
assume thatres (H) does not contain an element ofH . We claim without proof that our
algorithms in Section 3 can be adapted to instances without these restrictions.

Formally, INDUCED (CONSTRAINED) HAPLOTYPE INFERENCE BYPARSIMONY,
(C)IHIP for short, is defined as follows. Given a setG of length-m genotypes (and a
setH̃ of length-m haplotypes), the task is to find a setH(⊆ H̃) of length-m haplotypes
such thatG = res (H)?

Due to the lack of space, some proofs are deferred to a full version of this paper.

3 Induced Haplotype Inference by Parsimony

The main result of this section is that one can solve INDUCED HAPLOTYPE INFERENCE

BY PARSIMONY (IHIP) and INDUCED CONSTRAINED HAPLOTYPE INFERENCE BY

PARSIMONY (ICHIP) in O(k ·m · |G|) andO(k ·m · |G| · |H̃ |) time, respectively. In the
first paragraph, we consider the following special case of IHIP: given a multiset of

(

k

2

)

length-m genotypes (which are not necessarily distinct), is there a multiset ofk length-
m haplotypes inducing them? By allowing genotype multisets,we enforce that the input
contains information about how often each genotype is resolved by the haplotypes. This
allows us to observe a special structure in the input, which makes it easier to present
our results. In the second paragraph, we extend our findings to the case that the input
genotypes are given as a set, that is, without multiplicities. In this case, we might have
some genotypes that are resolved multiple times. However, we do not know in advance
which of the input genotypes would be resolved more than once. This makes the set
case more delicate than the multiset case. In fact, the set case can be interpreted as a
generalization of the multiset case. However, being easierto present, we focus on the
multiset case first. Recall that, for the ease of presentation, throughout this section we
assume that every genotype contains at least one letter 2 andthatres (H) andmres (H)
do not intersectH .

The Multiset Case.In this paragraph, we show that one can solve INDUCED HAPLO-
TYPE INFERENCE BYPARSIMONY (IHIP) in O(k · m · |G|) time in the multiset case.
This easily generalizes to the constrained case.

We need the following notation. Let#x(i) denote the number of genotypes inG

which have letterx at positioni, for x ∈ {0, 1, 2}. We start with a simple structural
observation that must be fulfilled by yes-instances. IfG is a yes-instance for IHIP, then
the set of genotypes restricted to their first positions (i.e., single-letter genotypes) is also
a yes-instance. By a simple column-exchange argument, thisextends to all positions,
implying the following observation (see Fig. 1 for an example).

4

Proc. 21st CPM, 2010

011

110

000

101100

Fig. 1. An example illustrating the Number Condition withk0 = 2 andk1 = 3. Vertices
are labeled with haplotypes. Solid edges are genotypes starting with 0 or 1 while dashed
edges are genotypes starting with 2.

Observation 1 (“Number Condition”) If a multiset of genotypes is a yes-instance for
IHIP, then, for each positioni ∈ {1, . . . , m}, there exist two integersk0 ≥ 0 andk1 ≥ 0
such thatk = k0 + k1, #0(i) =

(

k0

2

)

, #1(i) =
(

k1

2

)

, and#2(i) = k0 · k1.

The next lemma is the basis for recursively solving IHIP. Forthe ease of presen-
tation, we define the operation⊕. It can be applied to a haplotypeh and a genotypeg
if, for all i ∈ {1, . . . , m}, eitherh[i] = g[i] or g[i] = 2. It produces the unique length-
m haplotypeh′ := h ⊕ g such thatres (h, h′) = g. We further definei⋆ as the first
position for which there are genotypesg, g′ ∈ G with g[i⋆] 6= g′[i⋆]. Furthermore, for
all x ∈ {0, 1, 2}, we denote the set of all genotypesg ∈ G with g[i⋆] = x asGx.
Clearly, any solution forG can be partitioned into a solution forG0 and a solution
for G1, as formalized by Lemma 1.

Lemma 1. LetG be a multiset of genotypes such that not all genotypes inG are iden-
tical. Let H be a set of haplotypes inducingG. For x ∈ {0, 1}, let Hx denote the
haplotypes inH with x at positioni⋆. Then,H0 inducesG0, H1 inducesG1, andG2 is
exactly the multiset of genotypes resolved by taking each time one haplotype fromH0

and one haplotype fromH1. Moreover,H0 ∩ H1 = ∅.

The functionsolve(G) (see Alg. 1) recursively computes a solution forG, with
the base cases provided by the next two lemmas. Lemma 2 identifies two cases for
which there exists a unique solution forG, which in each case can be computed in
polynomial time.

Lemma 2. Assume that|G| ≥ 2. If all genotypes inG are identical or ifGx = ∅ for
somex ∈ {0, 1}, then there exists at most one solution forG. Moreover, inO(|G| · m)
time, one can compute a solution or report thatG is a no-instance.

Proof. First we consider the case that all genotypes are identical.Since every genotype
has letter2, Lemma 1 implies thatG is a no-instance.

Now, assume that not all genotypes are identical andGx = ∅ for somex ∈ {0, 1}.
Without loss of generality,G0 = ∅ andG1 6= ∅. By definition of i⋆, G2 6= ∅. Note
that in a solution forG there can be at most one haplotype having letter0 at positioni⋆

(otherwise, we have a contradiction to the fact thatG0 = ∅). Moreover, there must exist
at least one haplotype with0 at positioni⋆ (otherwise one cannot resolve the haplotypes
in G2). Thus, in any solutionH for G, there must exist a unique haplotypeh ∈ H

5

Proc. 21st CPM, 2010

Function solve(G)
Input : A multiset of genotypesG ⊆ {0, 1, 2}m.
Output : A setH containing at most two multisets of haplotypes each of which

inducesG, if G is a yes-instance; otherwise “no”.

begin1

if all genotypes inG are identical orGx = ∅ for somex ∈ {0, 1} then2

return the unique solution{H} (see Lemma 2);3

else if|G0| = 1 and |G1| = 1 then4

return the at most two solutions{H, H ′} (see Lemma 3);5

else6

Choosex ∈ {0, 1} such that|Gx| > 1 and|Gx| is minimal;7

H ← solve(Gx);8

forall H ∈ H do replaceH with MultisetExtend(H , G, G2) inH;9

if H contains only the empty setthen return “no” ;10

return H;11

end12

end13

Algorithm 1 : solve(G) recursively computes all (at most two) solutions forG.

with h[i⋆] = 0; further,G2 = mres (h, H \ {h}). One can now infer all haplotypes
as follows. Clearly, one can answer “no” if there is ani, 1 ≤ i ≤ m, such that both
letters 0 and 1 appear at positioni of the genotypes inG2. If there is a positioni and
a g ∈ G2 with g[i] 6= 2, then one can seth[i] := g[i]; otherwise, to have a solution
for G, all genotypes inG1 must have the same lettery ∈ {0, 1} at this position, so
one can seth[i] := 1 − y. With h settled, one can easily determine the haplotypesh′

with h′[i⋆] = 1 (these are the haplotypesg ⊕ h for g ∈ G2). Finally, one has to make
sure that all these haplotypes induceG. If not, then the input instance is a no-instance.
The running time of this procedure isO(|G| · m). ⊓⊔

Next, we show that there are at most two solutions forG if each ofG0 andG1

contains only a single genotype.

Lemma 3. If |G0| = 1 and |G1| = 1, then there are at most two solutions forG.
Moreover, inO(m) time, one can compute these solutions or report thatG is a no-
instance.

Proof. Let g0 andg1 be the genotypes inG0 andG1, respectively. By Lemma 1, two
pairs of haplotypes are required to resolve them, denoted byh0

0 andh1
0 (resolvingg0),

andh0
1 andh1

1 (resolvingg1). If |G2| 6= 4, then return “no” (see Observation 1); other-
wise, letG2 = {g2, g3, g4, g5}. If none ofg0 andg1 contains letter 2, then the haplo-
types are easily constructed (they are equal to the respective genotype). Otherwise, leti

be the first position whereg0 or g1 has letter 2, sayg0[i] = 2. Without loss of generality,
let h0

0[i] := 0 andh1
0[i] := 1. We consider the following two cases:

Case 1:g1[i] 6= 2.
Without loss of generality, letg1[i] = 0. Then, two of the genotypes inG2 must have0
at positioni and the other two must have2 at positioni; otherwise, return “no”. Without
loss of generality, letg2[i] = g3[i] = 0 andg4[i] = g5[i] = 2. Sinceg2 andg3 must

6

Proc. 21st CPM, 2010

be resolved byh0
0, one can uniquely determineh0

0 as follows. Consider any positionj.
If g2[j] 6= 2 andg3[j] 6= 2, then they must both be equal (if not, then return “no”). In
this case, leth0

0[j] = g2[j]. If exactly one ofg2[j] andg3[j] is equal to 2, sayg3[j] = 2,
then leth0

0[j] = g2[j]. If g2[j] = g3[j] = 2, then we know thatg1[j] 6= 2 (otherwise,
return “no”) and thush0

0[j] := 1 − g1[j]. Finally, leth1
0 := h0

0 ⊕ g0, h0
1 := h0

0 ⊕ g2,
andh1

1 := h0
0 ⊕ g3. If these haplotypes also correctly resolveg1, g4, andg5, then we

have a unique solution forG, otherwise return “no”.
Case 2:g0[i] = g1[i] = 2.

There is a genotype inG2 having0 at positioni and another having1 at positioni

(otherwise, return “no”). Without loss of generality, letg2[i] = 0, g3[i] = 1, h0
1[i] := 0,

andh1
1[i] := 1. Then,g4[i] = g5[i] = 2 andg2 = res (h0

0, h
0
1) andg3 = res (h1

0, h
1
1).

Now there are two possibilities to resolveg4 andg5. Eitherg4 = res (h1
0, h

0
1) andg5 =

res (h0
0, h

1
1), or g4 = res (h0

0, h
1
1) andg5 = res (h1

0, h
0
1). By choosing one of these two

possibilities, all four haplotypes are fixed. Thus, there are at most two solutions forG.
Note that there are only six genotypes. Thus, for every position the computations

are clearly doable in constant time. Hence, the whole procedure runs inO(m) time. ⊓⊔

The next two lemmas show that one can solve an IHIP instance recursively if neither
Lemma 2 nor Lemma 3 applies. That is, we now assume that not allgenotypes are
identical and we have|Gx| > 1 for somex ∈ {0, 1}. We show that, given a solution
for Gx, one can uniquely extend this solution to a solution forG, or decide thatG is a
no-instance, leading to functionMultisetExtend (see Alg. 2)

Lemma 4. Let |Gx| > 1 for somex ∈ {0, 1}, let Hx be a multiset of haplotypes
inducingGx, and letg be a genotype inG2 with the smallest number of 2’s. IfG is
induced byH with Hx ⊆ H , then all haplotypes inHx consistent withg must be
identical.

Proof. Without loss of generality, we assume that|G0| > 1. Suppose that there is anH
with Hx ⊆ H inducingG. Sinceg[i⋆] = 2, there must be a haplotypeh1 ∈ Hx and
a haplotypeh2 ∈ H \ Hx resolvingg. Clearly,h1 andh2 are consistent withg. We
show that there is no other haplotypeh ∈ Hx such thath 6= h1 andh is consistent
with g. For the sake of contradiction, assume that there is such a haplotypeh. First,
note thath, h1, andh2 are consistent withg and hence identical at positions whereg

does not have letter 2. Sinceh 6= h1, h differs fromh1 in at least one of the positions
whereg has letter 2. Thus,h2 (which together withh1 resolvesg and hence is the
complement ofh1 at the positions whereg has letter 2) must have the same letter ash

at some position whereh1 andh2 differ. This implies thatres (h, h2) ∈ G2 has fewer
2’s thang, contradicting the choice ofg. ⊓⊔

Lemma 5. Let |Gx| > 1 for somex ∈ {0, 1}, and letHx be a multiset of haplotypes
inducingGx. If G is induced byH with Hx ⊆ H , thenH is uniquely determined and
functionMultisetExtend (see Alg. 2) computesH in O(|Hx| · |G2| · m) time.

Proof. The correctness of lines 4–7 ofMultisetExtend (see Alg. 2) follows from
Lemma 4. Since includingh′ := h ⊕ g in H is the only choice, the genotypes resolved
by h′ and other haplotypes inHx should also be inG2; otherwise, no solution exists.

7

Proc. 21st CPM, 2010

Function MultisetExtend(Hx, G, G2)
Input : A haplotype multisetHx inducingGx for somex ∈ {0, 1}, and a multisetG2 of

genotypes.
Output : A haplotype multisetH inducingG with Hx ⊆ H , if one exists; otherwise an

empty set.

begin1

H := Hx;2

while G2 6= ∅ do3

Choose ag ∈ G2 with smallest number of 2’s;4

Choose anh ∈ Hx consistent withg;5

h′ := h⊕ g;6

H := H ∪ {h′};7

G′ := {g′ | ∃h′′ ∈ Hx : g′ = res (h′, h′′)};8

if G′ * G2 then return ∅;9

G2 := G2 \G′;10

end11

if mres (H) = G then return H ;12

else return∅;13

end14

Algorithm 2 : An algorithm to extend a solution forGx to G in the multiset case.

Thus, lines 8 and 9 ofMultisetExtend are correct. Line 10 ofMultisetExtend
safely removes the genotypes resolved byh′ from G2. The next while-iteration pro-
ceeds to find the next pair consisting of a haplotypeh and a genotypeg ∈ G2 satis-
fying Lemma 4. If there is a solution forG comprisingHx, then we must end up with
an emptyG2. Moreover,H \ Hx should resolve all genotypes inG1−x and, together
with Hx, the genotypes inG2; this is examined in line 12 ofMultisetExtend. Thus,
the functionMultisetExtend is correct. By Lemma 4, the solutionH with Hx ⊆ H

is unique.
Concerning the running time, note that the most time-consuming part of the function

is to find the consistent haplotypes inHx for a given genotype inG2. This can be done
in O(|Hx| · |G2| ·m) time by iterating over all haplotypes inHx and for each haplotype
over all genotypes inG2. ⊓⊔

Putting all together, we obtain the main theorem of this paragraph.

Theorem 1. In case of amultisetG of length-m genotypes,INDUCED HAPLOTYPE

INFERENCE BYPARSIMONY andCONSTRAINED INDUCED HAPLOTYPE INFERENCE

BY PARSIMONY can be solved inO(k · m · |G|) and O(k · m · (|G| + |H̃ |)) time,
respectively.

Proof. (Sketch) We show that the algorithmsolve(G) (see Alg. 1) is correct. If all
genotypes are identical orGx = ∅, for somex ∈ {0, 1}, then the correctness fol-
lows from Lemma 2. Hence, in the following, assume that not all genotypes are identi-
cal,G0 6= ∅, andG1 6= ∅. Distinguish the cases that|G0| = |G1| = 1 and|Gx| > 1,
for somex ∈ {0, 1}. In the case that|G0| = |G1| = 1, one can compute the solu-
tions (at most two) forG using Lemma 3. In the other case, for somex ∈ {0, 1}, it

8

Proc. 21st CPM, 2010

holds that|Gx| > 1 and|G1−x| > 0. Without loss of generality, assume|G0| > 1. By
Lemma 1, a solution forG consists of a solutionH0 for G0 and a solutionH1 for G1,
andH0 ∩ H1 = ∅. Since one tries to extend every solution forG0 and these extensions
are unique by Lemma 5, one will find every possible solution for G. Since the base
cases have at most two solutions and extensions are uniquelydetermined by Lemma 5,
there exist at most two solutions forG. In the constrained case, one only needs to check
whether one of the computed solutions is in the given set of haplotypes. The claimed
running time follows from Lemmas 2, 3, and 5. ⊓⊔

The Set Case.If the input is not a multiset, but a setG of genotypes, that is, all geno-
types inG are pairwise distinct, then the Number Condition (Observation 1) does not
necessarily hold. Consider the haplotype setH = {000, 001, 110, 111} which induces
the setres (H) = {002, 112, 221, 220, 222}, but also induces the multisetmres (H) =
{002, 112, 221, 220, 222, 222} (observe thatres (000, 111) = res (001, 110) = 222).
The problem is that we cannot directly infer fromG which genotypes should be re-
solved more than once. However, many properties of the multiset case (as for example
Lemmas 1,2, and 3) carry over to the set case, so we only need a moderate modification
of the multiset algorithm to solve the set case. More specifically, the key to solve the
set case is to adapt functionMultisetExtend (all details are deferred to the long
version of this paper).

Theorem 2. In case of asetG of length-m genotypes,INDUCED HAPLOTYPE INFER-
ENCE BY PARSIMONY and CONSTRAINED INDUCED HAPLOTYPE INFERENCE BY

PARSIMONY can be solved inO(k · m · |G|) andO(k · m · (|G| + |H̃ |)) time, respec-
tively.

4 General Haplotype Inference by Parsimony

This section contains an algorithm to solve the general parsimony haplotyping problem
for the unconstrained and the constrained versions inO(k4k+1 ·m) andO(k4k+1 ·m ·
|H̃ |) time, respectively, improving and partially simplifying previous fixed-parameter
tractability results [16,5]. In addition, we provide a simple kernelization.

We start with some preliminary considerations. Given a set of haplotypes resolving
a given set of genotypes, the relation between the haplotypes and the genotypes can
be depicted by an undirected graph, thesolution graph, in which the edges are labeled
by the genotypes and every vertexv is labeled by a haplotypehv. If an edge{u, v} is
labeled by genotypeg, we require thatg = res (hu, hv). We call such a vertex/edge
labelingconsistent. If only the edges are labeled, the graph is aninference graph(be-
cause it allows us to infer all the haplotypes). Solution graphs and inference graphs may
contain loops.

In what follows, assume that the input is a yes-instance, i.e., a solution graph ex-
ists. Intuitively, our algorithm “guesses” an inference graph forG (by enumerating all
possible such graphs) and then infers the haplotypes from the genotype labels on the
edges. To this end, it guesses for every connected componentof the solution graph a
spanning subgraph with edges labeled by some of the genotypes in G in such a way

9

Proc. 21st CPM, 2010

Input : A set of genotypesG ⊆ {0, 1, 2}m and an integerk ≥ 0.
Output : Either a set of haplotypesH with |H | ≤ k andG ⊆ res (H), or “no” if there is

no solution of size at mostk.

forall size-k subsetsG′ ⊆ G do1

forall inference graphsΓ for G′ onk vertices andk edgesdo2

forall non-bipartite connected components ofΓ do3

if possible, compute the labels of all vertices of the component (Lemma 7),4

otherwise try the next inference graph (goto line 2);
end5

forall bipartite connected components ofΓ do6

if possible, compute a consistent vertex labeling for the component7

(Lemma 8), otherwise try the next inference graph (goto line2);
end8

Let H denote the inferred haplotypes (vertex labels);9

if G ⊆ res (H) then return H ;10

end11

end12

return “no” ;13

Algorithm 3 : An algorithm solving HIP inO(k4k+1 · m) time.

that we have enough information at hand to infer the haplotypes. Then, one has to solve
the following subproblem: Given an inference graph for a subset of genotypes ofG,
does there exist a consistent vertex labeling? The next three lemmas show how to solve
this subproblem by separately considering the connected components of the inference
graphs.

Lemma 6. Let G be a set of genotypes and letΓ = (V, E) be a connected inference
graph forG. For each positioni, 1 ≤ i ≤ m, if there is a genotypeg ∈ G with g[i] 6=
2, then one can, inO(|V | + |E|) time, uniquely infer the letters of all haplotypes at
positioni or report that there is no consistent vertex labeling.

Lemma 7. Let Γ = (V, E) be a connected inference graph for a setG of genotypes
that contains an odd-length cycle. Then, there exists at most one consistent vertex la-
beling. Furthermore, one can compute inO(m · (|V | + |E|)) time a consistent vertex
labeling or report that no consistent vertex labeling exists.

Lemma 8. Let Γ = (Va, Vb, E) be a connected bipartite inference graph for a setG

of length-m genotypes. Letu ∈ Va andw ∈ Vb be arbitrarily chosen. Then,

1. one can compute inO(m · (|Va|+ |Vb|+ |E|)) time a consistent vertex labeling or
report that no consistent vertex labeling exists, and

2. the genotypes resolved byhu andhw are identical for every consistent vertex la-
beling.

Next, we describe the algorithm for the unconstrained version (HIP), see Alg. 3.
To solve HIP, we could enumerate all inference graphs forG and then find the vertex
labeling using Lemmas 7 and 8. However, to be more efficient, we first select a size-
k subset of genotypes (line 1 of Alg. 3), and then we enumerate all inference graphs

10

Proc. 21st CPM, 2010

on k vertices containing exactlyk edges labeled by thek chosen genotypes (line 2 of
Alg. 3). Assume that there exists a solution graph forG. Of all inference graphs on
k vertices andk edges consider one with the following properties:
− it contains a spanning subgraph of every connected component of the

solution graph, and
− the spanning subgraph of any non-bipartite connected component contains

an odd cycle (thus, the bipartite components of the inference graph are
exactly the bipartite components of the solution graph).

Obviously, this inference graph exists and is considered byAlg. 3. By Lemma 7, we
can uniquely infer the vertex labels for all connected components of the inference graph
containing an odd cycle. For every bipartite component, we can get a consistent vertex
labeling from Lemma 8. In such a bipartite component, for anytwo verticesu ∈ Va

andv ∈ Vb, the genotypes resolved byhu andhv are identical for every consistent
vertex labeling. Thus, the haplotypes resolve all genotypes contained in the respective
(bipartite) component of the solution graph. In summary, ifthe given instance is a yes-
instance, then our algorithm will find a set of at mostk haplotypes resolving the given
genotypes.

Theorem 3. HAPLOTYPE INFERENCE BYPARSIMONY andCONSTRAINED HAPLO-
TYPE INFERENCE BYPARSIMONY can be solved inO(k4k+1 · m) andO(k4k+1 · m ·
|H̃ |) time, respectively.

Proof. (Sketch) We first consider the unconstrained case. By the discussion above,
Alg. 3 correctly solves HIP. It remains to analyze its running time. First, there are
O(

(

|G|
k

)

) size-k subsetsG′ of G. Second, there areO(k2k) inference graphs onk ver-
tices containing exactlyk edges labeled by the genotypes inG′ because for every geno-
type g ∈ G′ we havek2 choices for the endpoints (loops are allowed) of the edge
labeled byg. For each of those inference graphs, applying Lemma 7 and Lemma 8 to
its connected components takesO(k·m) time. Hence, the overall running time of Alg. 3
sums up toO(

(

|G|
k

)

· k2k · m · k). Since|G| ≤ k2, the running time can be bounded
by O(k4k+1 · m).

One can easily adapt Alg. 3 to solve CHIP as follows. As before, one enumerates all
size-k subsetsG′ ⊆ G and all inference graphs forG′. Since, by Lemma 7, the vertex
labels for the connected components containing an odd cycleare uniquely determined,
one only has to check whether the inferred haplotypes are contained in the given hap-
lotype poolH̃ (otherwise, try the next inference graph). Basically, the only difference
is how to proceed with the bipartite components of the inference graph. Let(W, F) be
a connected bipartite component of the current inference graph. Instead of choosing an
arbitrary consistent vertex labeling as done in Lemma 8, proceed as follows. Choose an
arbitrary vertexv ∈ W and check for every haplotypeh ∈ H̃ whether there exists a
consistent vertex labeling for this component wherev is labeled byh. Note that fixing
the vertex label forv implies the existence of at most one consistent vertex labeling
of (W, F). If it exists, this labeling can be computed by a depth-first traversal starting
at v. If for a haplotypeh there exists a consistent vertex labeling of(W, F) such that
all labels are contained iñH , then proceed with the next bipartite component. Other-
wise, one can conclude that for the current inference graph there is no consistent vertex

11

Proc. 21st CPM, 2010

labeling using only the given haplotypes, and, hence, one can proceed with the next in-
ference graph. The correctness and the claimed running timefollow by almost the same
arguments as in the unconstrained case. ⊓⊔

Problem Kernelization.In this paragraph, we show that HIP admits an exponential-size
problem kernel. To this end, we assume the inputG to be in the matrix representation
that is mentioned in the introduction; that is, each row represents a genotype while
each column represents a position. Since it is obvious that we can upper-bound the
numbern of genotypes in the input byk2, it remains to bound the numberm of columns
(positions) in the input. The idea behind the following datareduction rule is that we can
safely delete a column if there is another column that is identical. By applying this rule
exhaustively, we can bound the number of columns by2k.

Reduction Rule. Let (G, k) be an instance ofHIP. If two columns ofG are equal,
then delete one of them.

The correctness of the reduction rule follows by the observation that, given at mostk
haplotypes resolving the genotypes in the reduced instance, we can easily find a solution
for the original instance by copying the respective haplotype positions. Next, we bound
the number of columns.

Lemma 9. Let (G, k) be a yes-instance ofHIP that is reduced with respect to the
reduction rule. Then,G has at most2k columns.

Proof. Let H denote a matrix ofk haplotypes resolvingG. It is obvious that if two
columnsi andj of H are equal, then columnsi andj of G are equal. Now, sinceG does
not contain a pair of equal columns, neither doesH . Since there are only2k different
strings in{0, 1}k, it is clear thatH cannot contain more than2k columns and thus,
neither canG. ⊓⊔

Since the numbern of genotypes can be bounded byk2 and the numberm of
columns can be bounded by2k (Lemma 9), one directly obtains Proposition 1.

Proposition 1. HAPLOTYPE INFERENCE BYPARSIMONY admits a problem kernel of
size at most2k · k2 that can be constructed inO(n · m · log m) time.

Plugging Proposition 1 into Theorem 3, we achieve the following.

Corollary 1. HIP can be solved inO(k4k+1 · 2k + n · m · log m) time.

5 Conclusion

We contributed new combinatorial algorithms for parsimonyhaplotyping with the po-
tential to make the problem more feasible in practice without giving up the demand for
optimal solutions. Our results also lead to several new questions for future research. For
instance, our kernelization result yields a problem kernelof exponential size. It would
be interesting to know whether a polynomial-size problem kernel exists, which may

12

Proc. 21st CPM, 2010

also be seen in the light of recent breakthrough results on methods to prove the non-
existence of polynomial-size kernels [1,7]. A second line of research is to make use of
the polynomial-time solvable induced cases to pursue a “distance from triviality” ap-
proach [8]. The idea here is to identify and exploit parameters that measure the distance
of general instances of parsimony haplotyping to the “trivial” (that is, polynomial-time
solvable) induced cases. Research in this direction is underway. A more speculative re-
search direction could be to investigate whether our results on the induced case (with
at most two optimal solutions) may be useful in the context ofrecent research [12]
on finding all optimal solutions in the general case. Clearly, it remains an interesting
open problem to find a fixed-parameter algorithm for parsimony haplotyping with an
exponential factor of the formck for some constantc.

References

1. H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without
polynomial kernels.J. Comput. System Sci., 75(8):423–434, 2009. 13

2. D. Catanzaro and M. Labbé. The pure parsimony haplotyping problem: Overview and com-
putational advances.International Transactions in Operational Research, 16(5):561–584,
2009. 1, 2

3. F. Cicalese and M. Milanic̆. On parsimony haplotyping. Technical Report 2008-04, Univer-
sität Bielefeld, 2008. 2, 3

4. R. G. Downey and M. R. Fellows.Parameterized Complexity. Springer, 1999. 3
5. M. R. Fellows, T. Hartman, D. Hermelin, G. M. Landau, F. A. Rosamond, and L. Rozenberg.

Haplotype inference constrained by plausible haplotype data. In Proc. 20th CPM, volume
5577 ofLNCS, pages 339–352. Springer, 2009. 2, 9

6. J. Flum and M. Grohe.Parameterized Complexity Theory. Springer, 2006. 3
7. L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs

for NP. InProc. 40th STOC, pages 133–142. ACM Press, 2008. 13
8. J. Guo, F. Hüffner, and R. Niedermeier. A structural viewon parameterizing problems: Dis-

tance from triviality. InProc. 1st IWPEC, volume 3162 ofLNCS, pages 162–173. Springer,
2004. 13

9. J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization.ACM
SIGACT News, 38(1):31–45, 2007. 3

10. D. Gusfield and S. H. Orzack. Haplotype inference. CRC Handbook on Bioinformatics,
chapter 1, pages 1–25. CRC Press, 2005. 1

11. L. van Iersel, J. Keijsper, S. Kelk, and L. Stougie. Shorelines of islands of tractability: Al-
gorithms for parsimony and minimum perfect phylogeny haplotyping problems.IEEE/ACM
Trans. Comput. Biology Bioinform., 5(2):301–312, 2008. 2, 3

12. G. Jäger, S. Climer, and W. Zhang. Complete parsimony haplotype inference problem and
algorithms. InProc. 17th ESA, volume 5757 ofLNCS, pages 337–348. Springer, 2009. 2, 13

13. G. Lancia, M. C. Pinotti, and R. Rizzi. Haplotyping populations by pure parsimony:
Complexity of exact and approximation algorithms.INFORMS Journal on Computing,
16(4):348–359, 2004. 2

14. G. Lancia and R. Rizzi. A polynomial case of the parsimonyhaplotyping problem.Opera-
tions Research Letters, 34:289–295, 2006. 2, 3

15. R. Niedermeier.Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
3

16. R. Sharan, B. V. Halldórsson, and S. Istrail. Islands oftractability for parsimony haplotyping.
IEEE/ACM Trans. Comput. Biology Bioinform., 3(3):303–311, 2006. 2, 3, 9

13

	Extended Islands of Tractability for Parsimony Haplotyping
	 Rudolf Fleischer, Jiong Guo, Rolf Niedermeier, Johannes Uhlmann, Yihui Wang, Mathias Weller, Xi Wu

