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Abstract. Parsimony haplotyping is the problem of finding a smallezg set of
haplotypes that can explain a given set of genotypes. Thegmois NP-hard, and
many heuristic and approximation algorithms as well as qpatyial-time solv-
able special cases have been discovered. We propose irddived-parameter
tractability results with respect to the parameter “sizetha target haplotype
set” k by presenting a®* (k**)-time algorithm. This also applies to the practi-
cally important constrained case, where we can only usehggas from a given
set. Furthermore, we show that the problem becomes polyaidimie solvable if
the given set of genotypes is complete, i.e., contains alsipte genotypes that
can be explained by the set of haplotypes.

1 Introduction

Over the last few years, haplotype inference has becomefdhe central problems in
algorithmic bioinformaticdT10]2]. Its applications imcle drug design, pharmacogenet-
ics, mapping of disease genes, and inference of populaistories. One of the major
approaches to haplotype inferenc@&simony haplotypingsiven a set of genotypes,
the task is to find a minimum-cardinality set of haplotypes #xplains the input set of
genotypes. The task to select as few haplotypes as pogs@skrony criterion) is mo-
tivated by the observation that in natural populations tin@lper of haplotypes is much
smaller than the number of genotypEks [2]. Referring for thekiground in molecular
biology to the rich literature (see, e.g., the surveys byaGzdaro and Labbé&l[2] and
Gusfield and OrzackKT10]), we focus on the underlying comtoirial problem. In an
abstract way, a genotype can be seen as a lengstring over the alphabg, 1,2},
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while a haplotype can be seen as a lengtktring over the alphabdt, 1}. A setH of
haplotypesxplains or resolvesa setG of genotypes if for every € G there is either
anh € H with g = h (trivial case), or there are two haplotypesandh, in H such
that, foralli € {1,...,m},
— if g has lette) or 1 at positioni, then bothh; andhs have this letter

at position;, and
— if g has letter at position:, then one of; or hs has lette) at position:

while the other one has lettér

For exampleH = {00100,01110, 10110} resolvesG = {02120, 20120, 22110}. Par-
simony haplotyping is NP-hard, and numerous algorithmprapaches based on heuris-
tics and integer linear programming methods are appliedastjze [2]. There is also
a growing list of combinatorial approaches (with provabdefprmance guarantees) in-
cluding the identification of polynomial-time solvable sf@ cases, approximation al-
gorithms, and fixed-parameter algorithrinls [5, 18, 14.16,11]

In this work, we contribute new combinatorial algorithms farsimony haplotyp-
ing, based on new insights into the combinatorial structifra haplotype solution.
Lancia and Rizzi[[14] showed that parsimony haplotyping bansolved in polyno-
mial time if every genotype string contains at most two st while the problem
becomes NP-hard if genotypes may contain three lefte[E3]. Sharan et al.[T16]
proved that parsimony haplotyping is APX-hard in even vestricted cases and iden-
tified instances with a specific structure that allow for palgnial-time exact solutions
or constant-factor approximations. Moreover, they shotired the problem is fixed-
parameter tractable with respect to the parametet“number of haplotypes in the
solution set”. The corresponding exact algorithm has m@ﬁmeO(kk2+km). These
results were further extended by van lersel etfall [11] tesaghere thgenotype ma-
trix (the rows are the genotypes and the columns arerilpositions in the genotype
strings) has restrictions on the numberf in the rows and/or columns. They identi-
fied various special cases of haplotyping with polynomimlktexact or approximation
algorithms with approximation factors depending on the bera of2’s per column
and/or row, leaving open the complexity of the case with asintwo 2's per column
(and an unbounded number 2§ per row). Further results in this direction have been
recently provided by Cicalese and Milan[d [3]. Finally,llBavs et al. [5] introduced
the constrained parsimony haplotyping problemmere the set of haplotypes may not
be chosen arbitrarily frord0, 1} but only from a poolH of plausible haplotypes.
Using an intricate dynamic programming algorithm, theyeexied the fixed-parameter
tractability result of Sharan et al_[116] to the constraigaede, proving a running time
of kKO**) . poly(m, |H|). Jager et al[T12] recently presented an experimentaysifid
algorithms for computingll possible haplotype solutions for a given set of genotypes,
where the integer linear programming and branch-and-balgadithms were sped up
using some insights into the combinatorial structure ofttaplotype solution, as for
example eliminating equal columns from the genotype matnict recursively decom-
posing a large problem into smaller ones.

Our contributions are as follows. We simplify and improve tlixed-parameter
tractability results of Sharan et al._J16] and Fellows et[&]. by proposing fixed-
parameter algorithms for the constrained and unconstiai@esions of parsimony hap-



Proc. 21st CPM, 2010

lotyping that run ink** - poly(m, | H|) time, which is a significant exponential speed-up
over previous algorithms. Moreover, we develop polynortirak data reduction rules
that yield a problem kernel of size at m@st:? for the unconstrained case. A combina-
torially demanding part is to show that the problems becoatgrmial-time solvable

if we require that the given set of genotypes is complete insttnse that it contains
all genotypes that can be resolved by some pair of haplotypts solution sef{.
We call this special caseduced parsimony haplotypingnd we distinguish between
the case that the genotypes are given as a multiset (notdiffeaent pairs of haplo-
types may resolve the same genotype), or just as a set withaltiplicities. We show
that, while there may be an exponential number of optimaltsmis in the general
case, there can be at most two optimal solutions in the irdloase. For both induced
cases, unconstrained and constrained, we propose algsnitmning inO(k - m - |G|)
andO(k -m - (|G| + |H|)) time, respectively. Note that these polynomial-time sblea
cases stand in sharp contrast to previous polynomial-tohable cased [3,14.116]11],
all of which require a bound on the number2s in the genotype matrix.

2 Preliminaries and Definitions

Throughout this paper, we considgenotypess strings of lengthn over the alpha-
bet {0, 1,2}, while haplotypesare considered as strings of lengthover the alpha-
bet{0,1}. If sis a string, thers[i] denotes the letter of at position:. This applies to
both haplotypes and genotypes. Two haplotypesind h, resolvea genotypey, de-
noted byres (h1, ha) = g, if, for all positionsi, eitherh,[i] = hsi] = g[i], or g[i] = 2
andh1 [2] 75 hg[l]

For a given sefl of haplotypes, letes (H) := {res(hi,h2) | hi,ha € H} de-
note the set of genotypes resolved Hyandmres (H) the multiset of genotypes re-
solved byH (the multiplicity of a genotype in mres (H) corresponds to the number
of pairs of haplotypes irff resolvingg). We also writeres (h, H) (mres (h, H)) for
the (multi)set of genotypes resolved hywith all haplotypes inH. We say a sefH{
of haplotypegesolvesa given set7 of genotypes ifG C res(H), andH inducesG
if res (H) = G. If G is a multiset, we similarly requir€ C mres (H) andmres (H) =
G, respectively. A haplotypg is consistentvith a genotypey if h[i] = g[i] for all po-
sitionsi with g[i] # 2.

We refer to the monograpHs[[#.6]15] for any details conogrparameterized algo-
rithmics and the survey]9] for an overview on problem keizaglon.

We consider the following haplotype inference problemsapeaterized with the
size of the haplotype séf to be computed:

HAPLOTYPE INFERENCE BYPARSIMONY (HIP):
Input: A setG of length+n genotypes and an integer> 0.
Question Is there a setl of lengthsn haplotypes such that/| < k andG C
res (H)?

In CONSTRAINED HAPLOTYPE INFERENCE BY PARSIMONY (CHIP) the input
additionally contains a set of length+n haplotypes and the task is to find a set of at
mostk haplotypes fromH resolvingG. Note that withk haplotypes one can resolve at
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most(’;) + k genotypes. Hence, throughout this paper, we assuméth& bounded
by (5) + k.

In this paper, we introduce the “induced case” of constihiaed unconstrained
parsimony haplotyping. To simplify the presentation of tbsults for the induced case,
in Section[ we assume that each genotype contains at leadetter2. Then, we
need two different haplotypes to resolve a genotype. Hancie induced case, we
assume thates (H) does not contain an elementBf. We claim without proof that our
algorithms in Sectiofl3 can be adapted to instances withesgtrestrictions.

Formally, INDUCED (CONSTRAINED) HAPLOTYPE INFERENCE BYPARSIMONY,
(C)IHIP for short, is defined as follows. Given a €gtof length+n genotypes (and a
setH of length+n haplotypes), the task is to find a $¢(C H) of length+n haplotypes
such thatG = res (H)?

Due to the lack of space, some proofs are deferred to a fudiameof this paper.

3 Induced Haplotype Inference by Parsimony

The main result of this section is that one can soneUCED HAPLOTYPEINFERENCE
BY PARSIMONY (IHIP) and INDUCED CONSTRAINED HAPLOTYPE INFERENCE BY
PARSIMONY (ICHIP) in O(k-m-|G|) andO(k-m-|G|-|H|) time, respectively. In the
first paragraph, we consider the following special case tPilgiven a multiset o(’g)
length+n genotypes (which are not necessarily distinct), is thereltiset of & length-
m haplotypes inducing them? By allowing genotype multisgtsenforce that the input
contains information about how often each genotype is vesidby the haplotypes. This
allows us to observe a special structure in the input, whielkems it easier to present
our results. In the second paragraph, we extend our findongsetcase that the input
genotypes are given as a set, that is, without multipligitie this case, we might have
some genotypes that are resolved multiple times. Howewedawnot know in advance
which of the input genotypes would be resolved more than ofcis makes the set
case more delicate than the multiset case. In fact, the setaamn be interpreted as a
generalization of the multiset case. However, being easipresent, we focus on the
multiset case first. Recall that, for the ease of presematiimoughout this section we
assume that every genotype contains at least one letterthairds (/) andmres (H)
do not intersect!.

The Multiset Caseln this paragraph, we show that one can soiveUceD HAPLO-
TYPE INFERENCE BYPARSIMONY (IHIP) in O(k - m - |G|) time in the multiset case.
This easily generalizes to the constrained case.

We need the following notation. Le#, (:) denote the number of genotypes@h
which have letter: at positions, for z € {0,1,2}. We start with a simple structural
observation that must be fulfilled by yes-instances: i§ a yes-instance for IHIP, then
the set of genotypes restricted to their first positions, Giagle-letter genotypes) is also
a yes-instance. By a simple column-exchange argumentexiténds to all positions,
implying the following observation (see FIg. 1 for an exaa)pl
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Fig. 1. An example illustrating the Number Condition with = 2 andk; = 3. Vertices

are labeled with haplotypes. Solid edges are genotypamstarith 0 or 1 while dashed
edges are genotypes starting with 2.

Observation 1 (“Number Condition”) If a multiset of genotypes is a yes-instance for
IHIP, then, for each position€ {1, ..., m}, there exist two integetds, > 0 andk; > 0
such thatk = ko + k1, #o(i) = (%), #1(i) = (%), and#2(i) = ko - k1.

The next lemma is the basis for recursively solving IHIP. frar ease of presen-
tation, we define the operati@n. It can be applied to a haplotypeand a genotype
if, forall i € {1,...,m}, eitherh[i] = g[i] or g[i] = 2. It produces the unique length-
m haplotypeh’ := h @ g such thatres (h, k') = g. We further defing* as the first
position for which there are genotypesy’ € G with g[i*] # ¢'[i*]. Furthermore, for
all z € {0,1,2}, we denote the set of all genotypgse G with g[i*] = = asG,.
Clearly, any solution foiG can be partitioned into a solution f@¥, and a solution
for G1, as formalized by Lemnid 1.

Lemma 1. LetG be a multiset of genotypes such that not all genotypésame iden-
tical. Let H be a set of haplotypes inducing. For = € {0,1}, let H, denote the
haplotypes ind with x at positioni*. Then,H, inducesG,, H; induces’,, andGs is
exactly the multiset of genotypes resolved by taking eaoh tine haplotype frorfly
and one haplotype fromi/;. Moreover,Hy N Hy = ().

The functionsol ve( G) (see Alg[l) recursively computes a solution @rwith
the base cases provided by the next two lemmas. Lelma 2fideritvo cases for
which there exists a unique solution faf, which in each case can be computed in
polynomial time.

Lemma 2. Assume thaltG| > 2. If all genotypes inG are identical or ifG,, = () for
somez € {0, 1}, then there exists at most one solutionarMoreover, inO(|G| - m)
time, one can compute a solution or report tidats a no-instance.

Proof. First we consider the case that all genotypes are iden8oate every genotype
has letter, Lemmdl implies that? is a no-instance.

Now, assume that not all genotypes are identical@pd= () for somez € {0,1}.
Without loss of generalityo = 0 andG; # ). By definition ofi*, G2 # ). Note
that in a solution folZ there can be at most one haplotype having Iéttatrposition:*
(otherwise, we have a contradiction to the fact that= 0)). Moreover, there must exist
at least one haplotype withat position:* (otherwise one cannot resolve the haplotypes
in G2). Thus, in any solutior{ for GG, there must exist a unique haplotypec H
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Function sol ve( G)

Input: A multiset of genotypes&: C {0, 1,2}™.

Output: A set’H containing at most two multisets of haplotypes each of which
inducesG, if GG is a yes-instance; otherwise “no”.

1 begin

2 if all genotypes i are identical orG, = ) for somex € {0, 1} then
3 return the unique solutiod H } (see Lemm@l2)

4 else if|Go| = 1 and|G1| = 1 then

5 return the at most two solution§H, H'} (see LemmEl3)

6 else

7 Chooser € {0, 1} such tha{G.| > 1 and|G.| is minimal;

8 H «— sol ve(Gy);

9 forall H € H do replaceH with Mul ti set Ext end( H, G, G2) inH;
10 if H contains only the empty seiten return “no” ;

11 return H;

12 end

13 end

Algorithm 1: solve(&) recursively computes all (at most two) solutions ¢er

with h[i*] = 0; further,Go = mres (h, H \ {h}). One can now infer all haplotypes
as follows. Clearly, one can answer “no” if there isian < i < m, such that both
letters 0 and 1 appear at positibnf the genotypes 7. If there is a position and
ag € Go with g[7] # 2, then one can sét[i] := g[i]; otherwise, to have a solution
for G, all genotypes in7; must have the same lettgre {0, 1} at this position, so
one can seh[i] := 1 — y. With h settled, one can easily determine the haplotyges
with #/[i*] = 1 (these are the haplotypesd h for g € (). Finally, one has to make
sure that all these haplotypes indugelf not, then the input instance is a no-instance.
The running time of this procedured(|G| - m). O

Next, we show that there are at most two solutionsdoif each of Gy and G
contains only a single genotype.

Lemma 3. If |Gy| = 1 and|G1| = 1, then there are at most two solutions f@r
Moreover, inO(m) time, one can compute these solutions or report thas a no-
instance.

Proof. Let go andg; be the genotypes iFy andG;, respectively. By Lemm@l 1, two
pairs of haplotypes are required to resolve them, denoted lmndh}, (resolvinggp),
andh? andh (resolvingg). If |G2| # 4, then return “no” (see Observatibh 1); other-
wise, letGs = {g2, 93, 94, g5 }. If none of gy andg; contains letter 2, then the haplo-
types are easily constructed (they are equal to the respagtnotype). Otherwise, lét
be the first position wherg, or g; has letter 2, say,[i] = 2. Without loss of generality,
let h9[i] := 0 andh}[i] := 1. We consider the following two cases:

Case 1:g1[i] # 2.
Without loss of generality, lej; [¢{] = 0. Then, two of the genotypes @&, must have)
at positioni and the other two must haeat position:; otherwise, return “no”. Without
loss of generality, let.[i] = gs[i] = 0 andga[i] = gs[i] = 2. Sincegs andgs must
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be resolved by, one can uniquely determirtg as follows. Consider any positign
If g2[j] # 2 andgs[j] # 2, then they must both be equal (if not, then return “no”). In
this case, leb{[j] = g2[j]. If exactly one ofgz[j] andgs|[;] is equal to 2, says|[j] = 2,
then leth§[j] = ga[j]. If g2[j] = g3[j] = 2, then we know thag; [j] # 2 (otherwise,
return “no”) and thushi[j] := 1 — g1 [j]. Finally, leth := hQ @ go, hY := hY @ g,
andhl := hd @ gs. If these haplotypes also correctly resolue g4, andgs, then we
have a unique solution fa¥, otherwise return “no”.
Case 2:go[i] = q1[i] = 2.
There is a genotype if/s having0 at position: and another having at position:
(otherwise, return “no”). Without loss of generality, lgfi] = 0, g3[i] = 1, h{[i] := 0,
andhl[i] := 1. Then,g4[i] = gs[i] = 2 andgs = res (h, hY) andgz = res (h}, hi).
Now there are two possibilities to resolygandgs. Eithergy = res (b, h{) andgs =
res (hY, h1), or g4 = res (hY, h}) andgs = res (h{, h}). By choosing one of these two
possibilities, all four haplotypes are fixed. Thus, theearmost two solutions fak.
Note that there are only six genotypes. Thus, for every jposthe computations
are clearly doable in constant time. Hence, the whole praeedins inO(m) time. O

The next two lemmas show that one can solve an IHIP instaccesigely if neither
Lemmal2 nor Lemm§l3 applies. That is, we now assume that ngealbtypes are
identical and we haviZ,| > 1 for somez € {0,1}. We show that, given a solution
for G, one can uniquely extend this solution to a solution@gror decide thaty is a
no-instance, leading to functidvul t i set Ext end (see Alg[2)

Lemma 4. Let |G| > 1 for somez € {0,1}, let H, be a multiset of haplotypes
inducingG,., and letg be a genotype x> with the smallest number of 2's. @ is
induced byH with H, C H, then all haplotypes in{, consistent withy must be
identical.

Proof. Without loss of generality, we assume th@t| > 1. Suppose that there is d&h
with H,, C H inducingG. Sinceg[i*] = 2, there must be a haplotype € H, and
a haplotypeh, € H \ H, resolvingg. Clearly,h; andhy are consistent witly. We
show that there is no other haplotypec H, such thath # h, andh is consistent
with g. For the sake of contradiction, assume that there is suclplatiipe h. First,
note thath, h1, andhsy are consistent witly and hence identical at positions where
does not have letter 2. Sinée+# hq, h differs fromh; in at least one of the positions
whereg has letter 2. Thushs (which together withh; resolvesg and hence is the
complement of; at the positions wherg has letter 2) must have the same lettehas
at some position wherk; andh,, differ. This implies thates (h, he) € G2 has fewer
2's thang, contradicting the choice af. a

Lemma 5. Let|G,| > 1 for somez € {0,1}, and letH, be a multiset of haplotypes
inducingG,. If G is induced byH with H, C H, thenH is uniquely determined and
functionMul t i set Ext end (see Alg[R) computds in O(|H,| - |G2| - m) time.

Proof. The correctness of liné3 @7 bl t i set Ext end (see Alg2) follows from
Lemmd?. Since including’ := h @ g in H is the only choice, the genotypes resolved
by 1" and other haplotypes iff,, should also be irt7,; otherwise, no solution exists.
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Function Mul ti set Ext end( H, G, G2)
Input: A haplotype multisef{, inducingG.,, for somez € {0, 1}, and a multiseG;, of

genotypes.
Output: A haplotype multisef inducingG with H, C H, if one exists; otherwise an
empty set.

1 begin

2 H := H,.;

3 while G2 # () do

4 Choose g7 € G2 with smallest number of 2’s;
5 Choose arh € H,, consistent withy;

6 W :=hog;

7 H:=HU{N}

8 G :={¢ |3n" € Hy: g =res(h',h")};

9 if G ¢ G, thenreturn 0;

10 Go = G2\ G';

11 end

12 if mres (H) = G thenreturn H;
13 else return (;
14 end
Algorithm 2 : An algorithm to extend a solution fd@¥r, to G in the multiset case.

Thus, line§B and9 dful t i set Ext end are correct. LIinEZI0 dful ti set Ext end
safely removes the genotypes resolvedibyfrom G>. The next while-iteration pro-
ceeds to find the next pair consisting of a haplotyipend a genotype € G- satis-
fying Lemme[d. If there is a solution fa¥ comprisingH,,, then we must end up with
an emptyG,. Moreover,H \ H, should resolve all genotypes @; —, and, together
with H,, the genotypes it¥y; this is examined in linEZ12 d¥ul t i set Ext end. Thus,
the functionvul t i set Ext end is correct. By LemmBl4, the solutidifi with H, C H
is unique.

Concerning the running time, note that the most time-comsg part of the function
is to find the consistent haplotypes/if, for a given genotype id/2. This can be done
in O(|H.|-|G2|-m) time by iterating over all haplotypes iff,. and for each haplotype
over all genotypes 5. a

Putting all together, we obtain the main theorem of this geaph.

Theorem 1. In case of amultisetG of lengthm genotypes|NDUCED HAPLOTYPE
INFERENCE BYPARSIMONY and CONSTRAINED INDUCED HAPLOTYPEINFERENCE
BY PARSIMONY can be solved irO(k - m - |G]) and O(k - m - (|G| + |H]|)) time,
respectively.

Proof. (Sketch) We show that the algoritheml ve( G) (see AlgIl) is correct. If all
genotypes are identical @, = 0, for somexz € {0, 1}, then the correctness fol-
lows from LemmdR. Hence, in the following, assume that nigexhotypes are identi-
cal, Gy # 0, andG; # 0. Distinguish the cases tha®y| = |G1| = 1 and|G,| > 1,
for somez € {0,1}. In the case thaiGy| = |G1| = 1, one can compute the solu-
tions (at most two) foiG using Lemmd13. In the other case, for some {0, 1}, it



Proc. 21st CPM, 2010

holds that G| > 1 and|G1_,| > 0. Without loss of generality, assun@,| > 1. By
Lemma[l, a solution fo€ consists of a solutio/, for G, and a solution?; for G,
andHy N H; = (). Since one tries to extend every solution &y and these extensions
are unique by Lemm@l 5, one will find every possible solutiondo Since the base
cases have at most two solutions and extensions are unideteymined by Lemmnid 5,
there exist at most two solutions f6t. In the constrained case, one only needs to check
whether one of the computed solutions is in the given set pfdtygpes. The claimed
running time follows from Lemmdd P] 3, ahH 5. O

The Set Caself the input is not a multiset, but a sét of genotypes, that is, all geno-
types inG are pairwise distinct, then the Number Condition (Obséowdil) does not
necessarily hold. Consider the haplotype et {000,001, 110, 111} which induces
the setres (H) = {002, 112,221, 220, 222}, but also induces the multisetres (H) =
{002, 112,221, 220, 222, 222} (observe thates (000,111) = res (001,110) = 222).
The problem is that we cannot directly infer fro which genotypes should be re-
solved more than once. However, many properties of the setiltiase (as for example
Lemmad1LP, arld 3) carry over to the set case, so we only neederate modification
of the multiset algorithm to solve the set case. More spetificthe key to solve the
set case is to adapt functidful t i set Ext end (all details are deferred to the long
version of this paper).

Theorem 2. In case of asetG of lengths genotypes,NDUCED HAPLOTYPE INFER-

ENCE BY PARSIMONY and CONSTRAINED INDUCED HAPLOTYPE INFERENCE BY
PARSIMONY can be solved i (k - m - |G|) andO(k - m - (|G| + |H])) time, respec-
tively.

4 General Haplotype Inference by Parsimony

This section contains an algorithm to solve the generaliparsy haplotyping problem
for the unconstrained and the constrained version@{&**+! . m) andO(k**+1 . m -
|fI |) time, respectively, improving and partially simplifyinggqvious fixed-parameter
tractability results[TTi5]5]. In addition, we provide a sil@gernelization.

We start with some preliminary considerations. Given a sbaplotypes resolving
a given set of genotypes, the relation between the haplstgpd the genotypes can
be depicted by an undirected graph, fvdution graphin which the edges are labeled
by the genotypes and every vertess labeled by a haplotypk,. If an edge{u, v} is
labeled by genotype, we require thay = res (h,, h,). We call such a vertex/edge
labelingconsistentlIf only the edges are labeled, the graph isr#erence graphbe-
cause it allows us to infer all the haplotypes). Solutiorppsaand inference graphs may
contain loops.

In what follows, assume that the input is a yes-instance,a.solution graph ex-
ists. Intuitively, our algorithm “guesses” an inferencagh forG (by enumerating all
possible such graphs) and then infers the haplotypes frengénotype labels on the
edges. To this end, it guesses for every connected compoh#ém solution graph a
spanning subgraph with edges labeled by some of the gersoige in such a way
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Input: A set of genotypes; C {0, 1,2} and an integek > 0.
Output: Either a set of haplotypeH with |[H| < k andG C res (H), or “no” if there is
no solution of size at most.

1 forall sizex subsets?’ C G do
2 forall inference graphd” for G’ on k vertices and: edgesdo

3 forall non-bipartite connected components/otio
4 if possible, compute the labels of all vertices of the congmtr{Lemmdr),
otherwise try the next inference graph (goto [the 2);
end

forall bipartite connected componentsiofdo
if possible, compute a consistent vertex labeling for thaponent
(Lemmd®), otherwise try the next inference graph (goto@pe

end
9 Let H denote the inferred haplotypes (vertex labels);
10 if G Cres(H)thenreturn H;
11 end
12 end

13 return “no” ;
Algorithm 3 : An algorithm solving HIP inO(k4+1 . m) time.

that we have enough information at hand to infer the hapksyphen, one has to solve
the following subproblem: Given an inference graph for asstitof genotypes of7,
does there exist a consistent vertex labeling? The nex thramas show how to solve
this subproblem by separately considering the connectegbonents of the inference
graphs.

Lemma 6. Let G be a set of genotypes and [Bt= (V, E) be a connected inference
graph forG. For each position, 1 < i < m, if there is a genotypeg € G with g[i] #

2, then one can, irO(|V| + |E|) time, uniquely infer the letters of all haplotypes at
position: or report that there is no consistent vertex labeling.

Lemma 7. LetI" = (V, E) be a connected inference graph for a §&bf genotypes
that contains an odd-length cycle. Then, there exists at oms consistent vertex la-
beling. Furthermore, one can compute@{m - (|V| + | E|)) time a consistent vertex
labeling or report that no consistent vertex labeling exist

Lemmas8. LetI" = (V,, V;, E) be a connected bipartite inference graph for a &et
of lengthm genotypes. Let € V, andw € V, be arbitrarily chosen. Then,

1. one can compute i@(m - (|V,| + |Vs| + | E|)) time a consistent vertex labeling or
report that no consistent vertex labeling exists, and

2. the genotypes resolved hy and h,, are identical for every consistent vertex la-
beling.

Next, we describe the algorithm for the unconstrained var§HIP), see Alg[1.
To solve HIP, we could enumerate all inference graphsi#@nd then find the vertex
labeling using Lemmdd 7 aldl 8. However, to be more efficieatfingt select a size-
k subset of genotypes (lié 1 of Algl 3), and then we enumethteference graphs

10
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on k vertices containing exactly edges labeled by thie chosen genotypes (lifié 2 of
Alg. B). Assume that there exists a solution graph@rOf all inference graphs on
k vertices and: edges consider one with the following properties:
— it contains a spanning subgraph of every connected compoh#re

solution graph, and
— the spanning subgraph of any non-bipartite connected cosmi@ontains

an odd cycle (thus, the bipartite components of the infexgmaph are

exactly the bipartite components of the solution graph).
Obviously, this inference graph exists and is consideredlgy@. By Lemme¥, we
can uniquely infer the vertex labels for all connected congus of the inference graph
containing an odd cycle. For every bipartite component, areget a consistent vertex
labeling from Lemmd&l8. In such a bipartite component, for tmy verticesu € V,
andv € V,, the genotypes resolved By, andh, are identical for every consistent
vertex labeling. Thus, the haplotypes resolve all genaygoatained in the respective
(bipartite) component of the solution graph. In summarthé given instance is a yes-
instance, then our algorithm will find a set of at médtaplotypes resolving the given
genotypes.

Theorem 3. HAPLOTYPE INFERENCE BYPARSIMONY and CONSTRAINED HAPLO-
TYPE INFERENCE BYPARSIMONY can be solved i (k**+1 . m) andO(k*+1 . m -
|H|) time, respectively.

Proof. (Sketch) We first consider the unconstrained case. By theusiison above,
Alg. B correctly solves HIP. It remains to analyze its rurmniime. First, there are
0(('")) size subsets?” of G. Second, there ar@(k*) inference graphs oh ver-
tices containing exactly edges labeled by the genotypegihbecause for every geno-
typeg € G’ we havek? choices for the endpoints (loops are allowed) of the edge
labeled byg. For each of those inference graphs, applying Lefiima 7 andriatfhto
its connected components take&:-m) time. Hence, the overall running time of Alg. 3
sums up toO(('¢1) - k2* - m - k). Since|G| < k2, the running time can be bounded
by O(k*+1 . m).

One can easily adapt Algl 3 to solve CHIP as follows. As befone enumerates all
size& subsetsy’ C G and all inference graphs f@’. Since, by LemmBl7, the vertex
labels for the connected components containing an odd eyelaniquely determined,
one only has to check whether the inferred haplotypes armicmd in the given hap-
lotype pool H (otherwise, try the next inference graph). Basically, thiy @lifference
is how to proceed with the bipartite components of the infeesgraph. LetW, F') be
a connected bipartite component of the current inferenaptgrinstead of choosing an
arbitrary consistent vertex labeling as done in Lerfiina &gxd as follows. Choose an
arbitrary vertexo € W and check for every haplotyde € H whether there exists a
consistent vertex labeling for this component wheis labeled byh. Note that fixing
the vertex label fow implies the existence of at most one consistent vertex itadpel
of (W, F). If it exists, this labeling can be computed by a depth-fiatérsal starting
atv. If for a haplotypeh there exists a consistent vertex labeling @f, F') such that
all labels are contained if/, then proceed with the next bipartite component. Other-
wise, one can conclude that for the current inference giagtetis no consistent vertex

11
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labeling using only the given haplotypes, and, hence, ong@oaceed with the next in-
ference graph. The correctness and the claimed runningaitogy by almost the same
arguments as in the unconstrained case. a

Problem KernelizationIn this paragraph, we show that HIP admits an exponential-si
problem kernel. To this end, we assume the in@ub be in the matrix representation
that is mentioned in the introduction; that is, each row espnts a genotype while
each column represents a position. Since it is obvious tleatan upper-bound the
numbem of genotypes in the input by?, it remains to bound the numberof columns
(positions) in the input. The idea behind the following daduction rule is that we can
safely delete a column if there is another column that istideh By applying this rule
exhaustively, we can bound the number of columng’y

Reduction Rule. Let (G, k) be an instance oHIP. If two columns ofG are equal,
then delete one of them.

The correctness of the reduction rule follows by the obgemahat, given at mosit
haplotypes resolving the genotypes in the reduced instarecean easily find a solution
for the original instance by copying the respective hagletpositions. Next, we bound
the number of columns.

Lemma9. Let (G, k) be a yes-instance oflIP that is reduced with respect to the
reduction rule. Then(7 has at mosg* columns.

Proof. Let H denote a matrix of haplotypes resolving-. It is obvious that if two
columnsi and; of H are equal, then columrsindj of G are equal. Now, sinc@' does
not contain a pair of equal columns, neither dé&sSince there are onlg* different
strings in{0, 1}, it is clear thatH cannot contain more tha2f columns and thus,
neither carG. ad

Since the numben of genotypes can be bounded by and the numbern of
columns can be bounded B§ (Lemm&®), one directly obtains Proposit[dn 1.

Proposition 1. HAPLOTYPE INFERENCE BYPARSIMONY admits a problem kernel of
size at mose* - k2 that can be constructed i (n - m - logm) time.

Plugging PropositioBl1 into Theordth 3, we achieve the falhgw

Corollary 1. HIP can be solved i®(k**! . 2% + n . m -logm) time.

5 Conclusion

We contributed new combinatorial algorithms for parsimbayplotyping with the po-
tential to make the problem more feasible in practice witlgiving up the demand for
optimal solutions. Our results also lead to several newttpresfor future research. For
instance, our kernelization result yields a problem keaf@xponential size. It would
be interesting to know whether a polynomial-size problemm&Eexists, which may
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also be seen in the light of recent breakthrough results ahads to prove the non-
existence of polynomial-size kernelg[]l,7]. A second lifessearch is to make use of
the polynomial-time solvable induced cases to pursue adidég from triviality” ap-
proach[[8]. The idea here is to identify and exploit paramsdigat measure the distance
of general instances of parsimony haplotyping to the “afivfthat is, polynomial-time
solvable) induced cases. Research in this direction isrwae A more speculative re-
search direction could be to investigate whether our resntthe induced case (with
at most two optimal solutions) may be useful in the contextemfent research[iL2]
on finding all optimal solutions in the general case. Cleatlgemains an interesting
open problem to find a fixed-parameter algorithm for parsiyroaplotyping with an
exponential factor of the fornd® for some constant
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