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Abstract

In this paper we use the notion of weak compositions to
obtain polynomial kernelization lower-bounds for sev-
eral natural parameterized problems. Let d ≥ 2 be some
constant and let L1, L2 ⊆ {0, 1}∗ × N be two parame-
terized problems where the unparameterized version of
L1 is NP-hard. Assuming coNP 6⊆ NP/poly, our frame-
work essentially states that composing t L1-instances
each with parameter k, to an L2-instance with parame-
ter k′ ≤ t1/dkO(1), implies that L2 does not have a kernel
of size O(kd−ε) for any ε > 0. We show two examples
of weak composition and derive polynomial kerneliza-
tion lower bounds for d-Bipartite Regular Perfect
Code and d-Dimensional Matching, parameterized
by the solution size k. By reduction, using linear pa-
rameter transformations, we then derive the following
lower-bounds for kernel sizes when the parameter is the
solution size k (assuming coNP 6⊆ NP/poly):

• d-Set Packing, d-Set Cover, d-Exact Set
Cover, Hitting Set with d-Bounded Oc-
currences, and Exact Hitting Set with d-
Bounded Occurrences have no kernels of size
O(kd−3−ε) for any ε > 0.

• Kd Packing and Induced K1,d Packing have no
kernels of size O(kd−4−ε) for any ε > 0.

• d-Red-Blue Dominating Set and d-Steiner
Tree have no kernels of sizes O(kd−3−ε) and
O(kd−4−ε), respectively, for any ε > 0.

Our results give a negative answer to an
open question raised by Dom, Lokshtanov, and
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Saurabh [ICALP2009] regarding the existence of uni-
form polynomial kernels for the problems above. All
our lower bounds transfer automatically to compres-
sion lower bounds, a notion defined by Harnik and
Naor [SICOMP2010] to study the compressibility of NP
instances with cryptographic applications. We believe
weak composition can be used to obtain polynomial ker-
nelization lower bounds for other interesting parameter-
ized problems.

In the last part of the paper we strengthen
previously known super-polynomial kernelization lower
bounds to super-quasi-polynomial lower bounds, by
showing that quasi-polynomial kernels for compositional
NP-hard parameterized problems implies the collapse
of the exponential hierarchy. These bounds hold even
the kernelization algorithms are allowed to run in quasi-
polynomial time.

1 Introduction

In parameterized complexity [12], a kernelization algo-
rithm for a parameterized problem L ⊆ {0, 1}∗ × N is
a polynomial time algorithm that transforms a given
instance (x, k) ∈ {0, 1}∗ × N to an instance (x′, k′) ∈
{0, 1}∗ × N such that:

• (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L, and

• |x′|+ k′ ≤ f(k) for some arbitrary function f .

In other words, a kernelization algorithm (or kernel) is
a polynomial-time reduction from a problem onto itself
that compresses the problem instance to a size depend-
ing only on the parameter. Appropriately, the function
f above is called the size of the kernel. It is customary
in many cases to not insist on the kernelization to be a
reduction from a problem onto itself, but rather to al-
low the reduction to be between two different problems.
This has been referred to as bikernelization in [2]. In
this present paper, we will not distinguish between the
two notions.

Kernelization is the central technique in parame-
terized complexity. Not only is it one of the most suc-
cessful techniques for showing that a problem is fixed-
parameter tractable, it also provides an equivalent way



of defining fixed-parameter tractability: a parameter-
ized problem is solvable in f(k) · nO(1) time iff it has
a kernel [8]. Furthermore, kernelization gives the only
known mathematical framework for studying and an-
alyzing the ancient and ubiquitous technique of pre-
processing (data reduction). For these reasons, kernel-
ization has become a research topic in its own right,
with many papers on the topic appearing each year,
and an annual international workshop devoted entirely
to it. Notable success stories include the linear ker-
nels for Vertex Cover [25] and Planar Dominat-
ing Set [1], a quadratic kernel for Feedback Ver-
tex Set [27], and the meta-theorems for kerneliza-
tion on bounded genus graphs [5] (see also the surveys
in [3, 19]).

Recently, there has been an effort in developing
tools that allow showing lower-bounds for kernel sizes.
This started with the work of Bodlaender et al. [4] which
developed a machinery for showing evidence for the non-
existence of polynomial size kernels. The key compo-
nent of this machinery is the notion of a composition
algorithm for parameterized problems. Roughly speak-
ing, a composition algorithm for a parameterized prob-
lem L takes as input a sequence of instances of L, each
with the same parameter value k, and outputs an in-
stance of L with parameter bounded by kO(1) such that
the output is a yes-instance of L iff one of the inputs
is also a yes-instance. Using a lemma by Fortnow and
Santhanam [16], this machinery was used to show that
problems such as Path and Clique parameterized by
treewidth do not have a polynomial-size kernels unless
coNP ⊆ NP/poly [4].

Extensions of the framework in [4] were not late
to appear. Chen, Flum, and Müller [9] extended this
framework to allow exclusion of kernelizations with sizes
that are sublinear in the original input size, i.e. kernel-
izations of size kO(1) · |x|1−ε. Following this, several
new lower-bounds for kernel sizes were obtained using
appropriately defined reductions called polynomial pa-
rameter transformations. These reductions were used
to show that problems such as Leaf Out Branch-
ing [14] and Disjoint Cycles [7] do not have polyno-
mial size kerels. Polynomial parameter transformations
have since been used extensively, e.g. in [18, 23]. Re-
cently, Bodlaender et al. [6] extended the kernelization
lower bounds machinery in a new direction by introduc-
ing the notion of so-called cross composition.

Dom et al. [11] took the notion of polynomial
parameter transformations a step further and developed
a general schema for combining these with compositions.
Their schema first transforms the given problem to a
colored variant, and then uses this color variant for
composition by assigning IDs to the different problem

instances. Using their schema, Dom et al. [11] were able
to show that important problems such as Connected
Vertex Cover and Subset Sum are unlikely to have
polynomial kernels. Later their technique was used for
showing several important results, including dichotomy
theorems for CSP kernelization [22, 24].

A common aspect of all the lower bound tech-
niques mentioned above is that they only allow super-
polynomial lower-bounds for kernel sizes. This feature
has been superseded by a recent breakthrough result
of Dell and van Melkebeek [10]. Dell and van Melke-
beek extended the framework of [4] to a communication
model, and showed using their scheme that the Vertex
Cover problem does not have a kernel with O(k2−ε)
edges unless coNP ⊆ NP/poly. They also showed sev-
eral other kernelization lower-bounds, including an ex-
tension of the above result to a Ω(kd−ε) lower-bound for
the d-Hitting Set problem (the Hitting Set prob-
lem restricted to families of sets of size d).

1.1 Our results In this paper, we define weak com-
positions where the output parameter is allowed to de-
pend also on the length of the input sequence, and not
only on the parameter. These were implicitly used by
Dell and van Melkebeek [10] to show kernelization lower-
bounds for Vertex Cover and d-Hitting Set. We
show two examples of weak-composition. Specifically,
we prove that d-Bipartite Regular Perfect Code
(d-BRPC) and d-Dimensional-Matching have weak
composition, and show that both problems have no ker-
nel of size O(kd−3−ε) for any ε > 0 unless coNP ⊆
NP/poly. Our construction is inspired by the composi-
tion algorithm of Dom et al. [11], but also differs from
it quite substantially, requiring several novel ideas to
make it work. Recently, we have learned that Dell and
Marx [15] have improved the lower bound for d-BRPC
(independently of our work), showing that this prob-
lem has no O(kd−ε) size kernel for any ε > 0 unless
coNP ⊆ NP/poly.

By reduction from d-BRPC, using a variant of
polynomial parameter transformations called linear pa-
rameter transformations, we obtain new lower-bounds
for several other problems, including d-Set Packing,
d-Set Cover, Kd Packing, and d-Steiner Tree
among several others. These new lower-bounds give
a negative answer to the main open question posed in
Dom et al. [11] regarding what they referred to as uni-
form polynomial kernelizations for the problems listed
above. Furthermore, all our lower bounds transfer auto-
matically to compression lower bounds, a notion defined
by Harnik and Naor [20] with cryptographic applica-
tions.

In the last part of the paper, we show that all cur-



rent super-polynomial kernelization lower bounds can
be extended to super-quasi-polynomial lower bounds
under the assumption that the exponential hierarchy
does not collapse.

1.2 Organization The remainder of this paper is or-
ganized as follows. In Section 2 we introduce our mod-
ified notion, namely weak composition, and prove that
it allows obtaining polynomial lower-bounds for kernel-
ization. Section 3 then presents the main composition
algorithm for d-BRPC, while Section 4 presents our
remaining kernelization lower-bound results. In Sec-
tion 5 we discuss quasi-polynomial kernelization lower
bounds. Finally Section 6 concludes with some future
directions.

2 Kernelization Lower Bounds Framework

In this section we present our extended framework for
proving our kernelization lower bounds. In particular,
we introduce the notions of weak compositions and
linear parametric transformations.

2.1 The Dell and van Melkebeek framework We
begin by first discussing the communication framework
presented by Dell and van Melkebeek. All definitions
and results in this section are taken from [10].

Definition 2.1. An oracle communication protocol for
a (unparameterized) language L ⊆ {0, 1}∗ is a commu-
nication protocol between two players. The first player
is given the input x ∈ {0, 1}∗ and is allowed to run
polynomial-time with respect to |x|; the second player is
computationally unbounded but is not given any part of
x. At the end of the protocol the first player should be
able to decide whether x ∈ L. The cost of the protocol
is the number of bits of communication from first player
to the second player.

For a language L ⊆ {0, 1}∗, we let ORn,t(L) denote
the language

ORn,t(L) :=
{
〈x1, x2, . . . , xt〉 : |xi| = n for all i,

and xi ∈ L for some i
}
.

We next introduce the so-called Complementary
Witness Lemma that forms the basis of the framework of
Dell and van Melkebeek. The proof of the lemma closely
follows the arguments given by Fortnow and Santhanam
in [16].

Lemma 2.1. (Complementary Witness Lemma)
Let L ⊆ {0, 1}∗ be a language and t : N → N\{0} be
polynomially bounded. If there is an oracle commu-
nication protocol that decides ORn,t(n)(L) with cost

O(t(n) log t(n)), then L ∈ coNP/poly. This holds
even when the first player runs in conondeterministic
polynomial time.

For a parameterized problem L ⊆ {0, 1}∗×N, we let
L̃ := {x#1k : (x, k) ∈ L} denote the unparameterized
version of L. The following lemma gives the connection
between oracle communication protocols for classical
problems and kernels for parameterized problems. The
proof is omitted as it is straightforward.

Lemma 2.2. If L ⊆ {0, 1}∗ × N has a kernel of size
f(k), then L̃ has an oracle communication protocol of
cost f(k).

2.2 Weak compositions One of the main compo-
nents of the kernelization lower bounds engine of Bod-
laender et al. [4] is the notion of a composition algorithm
for a parameterized problem. This notion has been ex-
tended to the notion of a cross-composition in [6]. How-
ever, both compositions and cross compositions are suit-
able for showing super-polynomial lower-bounds. Below
we define weak compositions that allow showing poly-
nomial lower-bounds.

Definition 2.2. (weak d-composition) Let d ≥ 2
be a constant, and let L1, L2 ⊆ {0, 1}∗ × N be two pa-
rameterized problems. A weak d-composition from L1 to
L2 is an algorithm A that on input (x1, k), . . . , (xt, k) ∈
{0, 1}∗ × N, outputs an instance (y, k′) ∈ {0, 1}∗ × N
such that:

• A runs in conondeterministic polynomial time with
respect to

∑
i(|xi|+ k).

• (y, k′) ∈ L2 ⇐⇒ (xi, k) ∈ L1 for some i, and

• k′ ≤ t1/dkO(1).

Note that in the regular compositions the output pa-
rameter is required to be polynomially bounded by the
input parameter, while in d-compositions it is also al-
lowed to depend on the number of inputs t. The proof
of the following lemma is deferred to the full version of
this paper [21].

Lemma 2.3. Let d ≥ 2 be a constant, and let L1, L2 ⊆
{0, 1}∗ ×N be two parameterized problems such that L̃1

is NP-hard. Also assume NP * coNP/poly. A weak-d-
composition from L1 to L2 implies that L2 has no kernel
of size O(kd−ε) for all ε > 0.

2.3 Linear parametric transformations Bod-
laender et al. [7] introduced the notion of polynomial
parametric transformations to obtain new kernelization
lower-bound results from existing ones. However these



type of reductions are suitable for super-polynomial
lower-bounds. Here we introduce the notion of linear
parametric transformations that facilitate polynomial
lower-bounds.

Definition 2.3. Let L1 and L2 be two parameterized
problems. We say that L1 is linear parameter reducible
to L2, written L1 ≤ltp L2, if there exists a polynomial
time computable function f : {0, 1}∗×N→ {0, 1}∗×N,
such that for all (x, k) ∈ Σ∗ × N, if (x′, k′) = f(x, k)
then:

• (x, k) ∈ L1 ⇐⇒ (x′, k′) ∈ L2, and

• k′ = O(k).

The function f is called linear parameter transforma-
tion.

Lemma 2.4. Let L1 and L2 be two parameterized prob-
lems, and let d ∈ N be some constant. If L1 ≤lpt L2

and L2 has a kernel of size O(kd), then L2 also has a
kernel of size O(kd).

The application of Lemma 2.4 above is to obtain
a polynomial lower-bound for any kernelization of L2,
assuming we already know a similar lower-bound for
L1. In Section 4 we will see several applications of this
lemma. There we will use implicitly the easily seen fact
that ≤lpt is transitive.

3 Main Composition Algorithm

In this section we present our main weak d-composition
algorithm from which we will derive all of our kerneliza-
tion lower-bound results. Throughout this section, we
let d be some fixed integer with d ≥ 3.

Our weak d-composition algorithm will be for the d-
Bounded Regular Perfect Code (d-BRPC) prob-
lem. In this problem, we are given a bipartite graph
G := (N ] T, E) along with a parameter k, such that
the degree of each vertex in N is exactly d. The set N
is called the set of non-terminal vertices and the set T
is referred to as the set of terminal vertices. The goal is
to find a subset of non-terminal vertices N ′ ⊆ N of size
k such that each terminal vertex in T has exactly one
neighbor in N ′. For a solution set N ′ ⊆ N , we say that
v ∈ N ′ dominates u ∈ T if {u, v} ∈ E(G). The main
result of this section is stated in the following theorem.

Theorem 3.1. Unless NP ⊆ coNP/poly, the d-BRPC
problem has no kernel of size O(kd−3−ε) for any ε > 0.

We mention that the d-BRPC problem is one of the
central problems used by Dom et al. in [11] for obtain-
ing their super-polynomial kernelization lower-bound

results. Indeed, the construction we present in this sec-
tion is very much inspired by the construction in [11],
but it also differs from it quite substantially in order to
confirm with all requirements of a d-composition (Defi-
nition 2.2).

To prove Theorem 3.1, we will be working
with a colored variant of d-BRPC called Col-
ored d-Bipartite Regular Perfect Code (Col-
d-BRPC), where the input is appended by a surjective
color function col : N → {1, . . . , k}, and the goal is
to find a solution N ′ ⊆ N that consists of exactly one
vertex of each color. Our d-composition will be from
Col-3-BRPC to (d+3)-BRPC. Overall, our construc-
tion proceeds in two stages:

• In the first step we will compose to an instance of
Bipartite Perfect Code (BPC); that is, to an
instance where the vertices of N do not all have
degree d + 3, but a few of them have high degree
(actually degree k).

• In the second step, we will split the vertices of high
degree into many vertices of degree d + 3, using an
equality gadget that preserves the correctness of our
construction.

For ease of notation, we will assume that our
composition algorithm is given a sequence of m = td/d!
instances with parameter k, and the goal is to output
a single instance with parameter bounded by t · kO(1).
We can assume that k > d, since otherwise all instances
can be solved in polynomial-time, and a trivial instance
of size O(1) can be used as output. We will also assume
that k ≡ 0 (mod d + 3) (and justify this assumption
later on).

3.1 First step of the composition Let
(G1, col1, k), . . . , (Gm, colm, k) be the input sequence
of Col-3-BRPC instances, where m = td/d! and
Gi = (Ni ] Ti, Ei). Observe that if |Ti| 6= 3k for some
i, then (Gi, k) /∈ Col-3-BRPC, and so we can assume
that |Ti| = 3k for all i. For i ∈ {1, . . . ,m}, we let
Ti = {ui1, . . . , ui3k} and Ni = {vi1, . . . , vini

}. We will use
G = (N ] T, E) and k′ to denote the instance of BPC
which is the output of our composition. The set of ter-
minal vertices will consist of k + 1 terminal components
T = T ′∪W1∪· · ·∪Wk and the set of non-terminals will
consist of all sets of non-terminals Ni, in addition to
another set X; that is, N = (

⋃
i Ni) ∪ X. We proceed

in describing each of these terminal and non-terminal
components in detail.

• The set T ′ consists of 3k vertices {u1, . . . , u3k}.
These are connected to the nonterminals in Ni,
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Figure 1: A graphical description of the construction in the first step. The white boxes represent components of
terminal vertices, the gray boxes represent components of non-terminal vertices.

1 ≤ i ≤ m, in a way that matches the adjacency
between the terminals and non-terminals in Gi.
That is, {uα, viβ} ∈ E(G) ⇐⇒ {uiα, viβ} ∈ E(Gi).

• For each i ∈ {1, . . . ,m}, we assign to Ni a unique
identifier IDi ⊆ {1, . . . , t + d} with |IDi| = d. This
is possible since

(
t+d
d

)
> td/d! = m.

• The set X of non-terminals consists of t+d vertices,
and we write X = {x1, . . . , xt+d}.

• For each j ∈ {1, . . . , k}, the set Wj consists of t+d

vertices, and we write Wj = {wj1, . . . , w
j
t+d}.

• For each i ∈ {1, . . . ,m} and j ∈ {1, . . . , k}, we add
edges between the nonterminal component Ni and
the terminal component Wj as follows: For each
vertex v ∈ Ni with coli(v) = j, we connect v to all
vertices in Wj that have indices belonging to IDi;
that is, we add the edge {v, wj`} to E(G) for all
` ∈ IDi.

• For each ` ∈ {1, . . . , t + d} and j ∈ {1, . . . , k}, add
the edge {x`, wj`} to E(G).

• Set k′ = k + t.

This completes the construction of the first stage
(see Fig. 1). It is clear that it can be carried out in
polynomial time. The general idea is that the selection
of t vertices from X encodes the selection of an ID
which uniquely identifies some non-terminal component
Ni. The terminal sets W1, . . . ,Wk then enforce that
the remaining k vertices of the solution will be selected

only from a single Ni. The next lemma makes this more
precise, and proves the correctness of the first step of our
construction.

Lemma 3.1. (G, k′) ∈ BPC ⇐⇒ (Gi, k) ∈
Col-3-BRPC for some i ∈ {1, . . . ,m}.

Proof. (⇐) This is the easy direction. Suppose (Gi, k) ∈
Col-3-BRPC for some i ∈ {1, . . . ,m}, and let N ′i ⊆ Ni

be a solution of size k. We take N ′ = {vj ∈ N : vij ∈ N ′i}
and X ′ = {xj ∈ X : j ∈ IDi} to be our solution for
(G, k′), where IDi = {1, . . . , t + d} \ IDi. Observe that
|N ′ ∪ X ′| = k + t = k′. Furthermore, each vertex
in T ′ is dominated by exactly one vertex in N ′, by
definition of N ′i and by our construction. Also, for each
j ∈ {1, . . . , k}, a vertex wj` is dominated by exactly one
vertex in N ′ in case ` ∈ IDi (the vertex corresponding
to the vertex in N ′i with color j), and dominated by
exactly one vertex in X ′ if ` /∈ IDi.

(⇒) This is the more interesting direction. Let S
denote a solution for (G, k′) with |S| = k′ = k + t.
The first observation is that, because the terminal
component T ′ is only connected to N1, . . . , Nm but not
to X, and has size exactly 3k, any solution for (G, k′)
has to pick exactly k vertices from N1, . . . , Nm. This
implies that S contains precisely t vertices from X, since
k′ = k + t. Let X ′ ⊆ S ∩X denote this set of t vertices,
and let N ′ = S \X ′. Since |X ′| = t, we know that N ′

includes vertices from k different colors (in their Col-
3-BRPC instances), because if color j ∈ {1, . . . , k} is
not present, some vertices in Wj will not be dominated.
Write ID = {` ∈ {1, . . . , t + d} : x` ∈ X ′}, and let
ID = {1, . . . , t + d} \ ID. Observe that |ID| = t and



|ID| = d.
We argue that ID must equal some IDi for some

i ∈ {1, . . . ,m}. To see this, assume for contradiction
that ID 6= IDi for all i ∈ {1, . . . ,m}. Consider a
vertex v ∈ N ′, and suppose v ∈ Ni. Let j = coli(v).
Recall that the set of neighbors of v in Wj is precisely
{wj` ∈ Wj : ` ∈ IDi}. Now as ID 6= IDi, it must
be that ID ∪ IDi 6= {1, . . . , t + d}; that is, there is
some `∗ ∈ {1, . . . , t + d} \ (ID ∪ IDi). But then, by our
construction, S does not dominate wj`∗ , a contradiction.

Thus ID = IDi for some i ∈ {1, . . . ,m}. We argue
next that N ′ ⊆ Ni. Assume for contradiction that this
is not the case; that is, there is some v ∈ N ′ ∩ Ni∗ for
i∗ 6= i. Let j = coli∗(v). The set of neighbors of v in
Wj is {wj` ∈ Wj : ` ∈ IDi∗}. Since ID = IDi 6= IDi∗ ,
there is some `∗ ∈ {1, . . . , t+d}\(ID∪ IDi∗), and S does
not dominate wj`∗ . We have therefore established that
N ′ ⊆ Ni. Since N ′ dominates all vertices in T ′, and
|N ′| = k, it follows that N ′ is also a solution for (Gi, k).
Thus, (Gi, k) ∈ Col-3-BRPC, and the lemma follows.

3.2 Second step of the composition We next alter
the output instance (G, k′) = ((N ] T, E), k′) of the
composition algorithm in the previous section so that
it becomes an instance of (d + 3)-BRPC. That is, we
create an instance (G∗, k∗) = ((N∗ ]T ∗, E∗), k∗) where
all non-terminal vertices in N∗ have degree d + 3, and
(G∗, k∗) ∈ (d+3)-BRPC ⇐⇒ (G, k′) ∈ BPC. Initially
we will start with G∗ = G, and then we modify G∗

so that it fits our requirements. Note that we require
all non-terminals in N∗ to have degree exactly d + 3,
and not merely a degree bounded by d + 3. This
actually introduces some complications, but will prove
useful in showing our other kernelization lower-bounds
in Section 4.

Recall that the set of non-terminals in the BPC
instance of the previous section is composed of several
components, i.e. N = (

⋃
i∈{1,...,m}Ni) ∪ X. Observe

that the degree of each non-terminal vertex v ∈
⋃
i Ni is

precisely d+3, and that the degree of each non-terminal
vertex x ∈ X is precisely k. Thus, we only need to fix
the degree of vertices in X = {x1, . . . , xt+d}. The goal of
these vertices is to encode the selection of an ID which
identifies some non-terminal component Ni. This ID
is then verified in the k different terminal components
W1, . . . ,Wk. For this reason, the naive approach of
splitting the vertices in X to vertices of bounded degree
might result in the selection of k different ID’s. In the
following we introduce an equality gadget that enforces
the selection k ID’s which are actually the same.

Let ` ∈ {1, . . . , t + d}, and consider x` ∈ X. Recall
that we assume that k ≡ 0 (mod d + 3). We replace x`
with k vertices x`1, . . . , x

`
k in N∗, and we add the edges

{x`j , w
j
`} to E∗. We then add to N∗ a set of additional

non-terminals {y`1, . . . , y`k−1}. Each one of these new
non-terminal vertices will be connected to a distinct set
of d+2 new terminal vertices. This gives us k−1 disjoint
sets of new terminals, Z`

1, . . . , Z
`
k−1, with |Z`

j | = d + 2.
Now we connect x`j to the first 2 vertices of Z`

j , and the
last d vertices of Z`

j−1, for all j ∈ {2, . . . , k − 1}. We
also connect x`1 to the first 2 vertices of Z`

1, and x`k to
the last d vertices of Z`

k−1. (See Fig. 2 for a graphical
depiction of this construction.)

Note that all for each ` ∈ {1, . . . , t + d}, the non-
terminal vertices {x`2, . . . , x`k−1} have degree d + 3 as
required. Vertex x`1 has degree 3, x`k has degree d + 1,
and all non-terminals {y`1, . . . , y`k−1} have degree d + 2.
We next add some additional terminals so that all non-
terminals have degree d + 3. First we add a new set of
terminals Z`

k of size d + 2. We connect x`1 to the first
d terminals of this set, and x`k to the last 2 terminals.
We also connect the non-terminals y`1, . . . , y

`
d+2 to Z`

k

by a perfect matching. This fixes the degree of x`1, x`k,
and {y`1, . . . , y`d+2}. To fix the remaining non-terminals,
we add p = (k − d − 3)/(d + 3) new disjoint sets of
terminals, Z`

k+1, . . . , Z
`
k+p, each of size d + 3. Note that

p is in fact an integer since we assume k > d and k ≡ 0
(mod d + 3). We then add p new non-terminal vertices,
x`k+1, . . . , x

`
k+p, and connect x`k+i to all vertices in Z`

k+i,
for i ∈ {1, . . . , p}. Finally, we group the the non-
terminals {y`d+3, . . . , y

`
k−1} into p groups of size d + 3

each, and connect group i, 1 ≤ i ≤ p, to Z`
k+i by a

perfect matching.
We do the above for each ` ∈ {1, . . . , t + d}. This

gives us our graph G∗ = (N∗ ] T ∗, E∗). It is easy to
see that all non-terminals in G∗ have degree d + 3, and
that constructing G∗ can be done in polynomial-time.
Observe that the size of

⋃
`∈{1,...,t+d}

(
{w1

` , . . . , w
k
` } ∪⋃

i∈{1,...,k+p} Z`
i

)
or equivalently the total number of

terminal vertices except those in T ′, is:

(t + d)(k + (d + 2)k + (d + 3)p)
= (t + d)((d + 3)k + (d + 3)p)
= (t + d)(d + 3)(k + p).

To conclude our construction we set k∗ = k + t(k +
p)+d(k−1). The next two lemmas prove the correctness
of our construction.

Lemma 3.1. Let S ⊆ N∗ be any solution for (G∗, k∗).
For each ` ∈ {1, . . . , t + d}, exactly one of the following
cases occur:

• {x`1, . . . , x`k+p} ⊆ S and {y`1, . . . , y`k−1} ∩ S = ∅.

• {y`1, . . . , y`k−1} ⊆ S and {x`1, . . . , x`k+p} ∩ S = ∅.
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Figure 2: A graphical description of the main part of the equality gadget used to replace x`.

Lemma 3.2. (G, k′) ∈ BPC ⇐⇒ (G∗, k∗) ∈ (d + 3)-
BRPC.

Proof. (⇒) Suppose S is a solution for (G, k′). Then as
argued in Lemma 3.1, S consists of a subset k vertices
N ′ ⊆ Ni, for some i ∈ {1, . . . ,m}, and a subset of t
vertices X ′ ⊆ X. It is not difficult to verify that

S∗ = N ′ ∪ {x`1, . . . , x`k+p : x` ∈ X ′}
∪ {y`1, . . . , y`k−1 : x` /∈ X ′}

is a solution for (G∗, k∗).
(⇐) Assume that S∗ is a solution for (G∗, k∗), and

let N ′ = S∗ ∩ (
⋃
i∈{1,...,m}Ni) and S′ = S∗ \ N ′.

Since |T ′| = kd and the degree of each non-terminal
vertex is d, we must have |N ′| = k, which implies that
|S′| = k∗ − k = t(k + p) + d(k − 1). Observe that for
any vertex v ∈

⋃
i∈{1,...,m}Ni, its number of neighbors

in
⋃
j∈{1,...k}Wj is precisely d, hence N ′ can dominate

at most kd vertices in
⋃
j∈{1,...k}Wj . Therefore the

number of terminal vertices S′ dominates is at least
(t + d)(d + 3)(k + p)− kd.

By Lemma 3.1, we get that for each ` ∈ {1, . . . , t +
d}, either {x`1, . . . , x`k+p} ⊆ S′ or {y`1, . . . , y`k−1} ⊆ S′,
and if one set is contained in S′, the other must be com-
pletely disjoint from S′. Let ID = {` : {x`1, . . . , x`k+p} ⊆
S′}. Observe that if ` ∈ ID, then all the terminals
in {w1

` , . . . , w
k
` } are dominated, and otherwise none of

them are dominated.
Let k1 = |{w1

` , . . . , w
k
` } ∪ (

⋃
i∈{1,...,k+p} Z`

i )| =
k + (d + 2)k + (d + 3)p and k2 = |

⋃
i∈{1,...,k+p} Z`

i | =
(d + 2)k + (d + 3)p.

We have:

k1|ID|+ k2(t + d− |ID|)
= k|ID|+ ((d + 2)k + (d + 3)p)(t + d)

= k|ID|+ ((d + 3)(k + p)− k)(t + d)

= k|ID|+ (t + d)(d + 3)(k + p)− (t + d)k.

This number must be at least (t + d)(d + 3)(k + p)−kd,
which means that |ID| ≥ t.

We next argue that |ID| ≤ t. Assume for the
sake of contradiction that this is not the case, then
by construction, for some subset H ⊆ {1, . . . , t + d}
of size at least (t + 1), we dominate {wj` : ` ∈ H}
for j = 1, . . . , k. Consider any vertex v ∈ N ′, and
suppose it connects to Wj for some j ∈ {1, . . . , k}. The
number of neighbors v has in {wj1, . . . , w

j
t+d} is d, and

so some terminal in {wq1, . . . , w
q
t+d} must be dominated

twice, a contradiction. It follows that |ID| = t, and so
S′ = N ∪ {x` : ` ∈ ID} is a solution for (G, k′).

3.3 Proof of Theorem 3.1 We are now in position
to complete the proof of Theorem 3.1. We begin with
the following lemma.

Lemma 3.3. Let d be a fixed positive integer. The
Col-3-BRPC problem restricted to the case where the
solution size k satisfies k ≡ 0 (mod d) is NP-hard.

Proof. We first show that 3-BRPC is NP-hard even
when restricted to the case with k ≡ 0 (mod d).
This is done by a reduction from the 3-Dimensional
Matching problem which is well known to be NP-
complete [17]. In 3-Dimensional Matching, we are



given 3 disjoint sets A, B, and C, each of size k, and a
set M ⊆ A×B×C. The question is whether there exists
a subset M ′ ⊆M of size k which is pairwise disjoint. By
padding k until k ≡ 0 (mod d) and padding M , we have
that 3-Dimensional Matching restricted to the case
that k ≡ 0 (mod d) is NP-complete. 3-Dimensional
Matching can easily be reduced to 3-BRPC problem
by letting A∪B∪C be the set of terminals, and each set
S ∈ M be the neighborhood of a nonterminal vertex.
Using next the reduction in Dom et al. [11] from 3-
BRPC to Col-3-BRPC that preserves the solution size
completes the proof of the lemma.

Proof. (of Theorem 3.1.) Let d′ = d + 3, and let
t′ = m = td/d! = td

′−3/(d′ − 3)!. The composition
algorithm presented above composes t′ Col-3-BRPC
instances with parameter k such that k ≡ 0 (mod d′)
to a d′-BRPC instance with parameter k∗ = O(kt) =
O(k(t′d!)1/d) = O(t′1/(d

′−3)k). Thus, our composition
is in fact a weak (d′ − 3)-composition from Col-3-
BRPC to d′-BRPC. Since Col-3-BRPC is NP-hard
even when k ≡ 0 (mod d′) (Lemma 3.3), applying
Lemma 2.3 shows that d-BRPC has no kernel of size
O(kd−3−ε), for any ε > 0, unless coNP ⊆ NP/poly.

In the full version of this paper [21] we give another
example of a weak composition for d-Dimensional
Matching (d-DM). In d-DM, we are given a set
S ⊆ A = A1 × · · · × Ad for some collection A1, . . . , Ad

of pair-wise disjoint sets. The parameter is a positive
integer k. The question is whether there is a subset
P ⊆ S of size k that are pairwise disjoint. The d-
DM problem is a natural generalization of maximum
matching in bipartite graphs to high dimensions, and is
known to be NP-hard for every d ≥ 3 [17].

Theorem 3.2. ([21]) Unless NP ⊆ coNP/poly, d-DM
has no kernel of size O(kd−3−ε) for any ε > 0.

4 Applications

In this section we derive polynomial lower bounds for
several problem using our lower bound for d-BRPC
and linear parameter transformations discussed in Sec-
tion 2.3. Some of the reductions appearing in this sec-
tion appeared also in [11].

4.1 Set-theoretic problems The d-Set Packing
takes as input a set system (U,F) with each set in F
having cardinality d, and a parameter k, and the goal
is to determine whether there are k pairwise disjoint
subsets in F . The d-Set Cover problem takes the
same input as d-Set Packing, and the goal is to
determine whether there exists a subfamily of F with
at most k sets whose union is U . If these sets are

required to be pairwise disjoint, then the problem
is known as d-Exact Set Cover. The Hitting
Set with d-Bounded Occurrences problem takes
as input a set system (U,F) such that each element
u ∈ U appears in d sets of F , and a parameter
k, and the goal is to find a subset of U of size k
that has non-empty intersection with each set in F .
When the size of this intersection is required to be
precisely 1, we get the Exact Hitting Set with d-
Bounded Occurrences problem. Observe that all
these problems have a trivial kernel of size

(
kd
d

)
= O(kd)

by removing identical sets. The following theorem
shows that trivial kernelization cannot be substantially
improved.

Theorem 4.1. Unless coNP ⊆ NP/poly, d-Set
Packing, d-Set Cover, d-Exact Set Cover, Hit-
ting Set with d-Bounded Occurrences, and Ex-
act Hitting Set with d-Bounded Occurrences
have no kernels of size O(kd−3−ε) for any ε > 0.

Proof. We present a linear parametric transformation
from d-BRPC to all of the problems mentioned in the
theorem. The theorem will then follow from Theo-
rem 3.1 and Lemma 2.4.

Given a d-BRPC instance (G, k) with G = (N ]
T, E) and |T | = kd terminals, we construct a d-Set
Packing instance (U,F , k) as follows. We let our
universe U be U = T . For each nonterminal v ∈ N ,
construct set Sv = N(v) in F , where N(v) is the
neighbors of v in T . Obviously each set in the family has
cardinality d, and every solution for (G, k) one to one
corresponds to a solution for (U,F , k). Thus, d-BRPC
≤lpt d-Set Packing.

Note that any solution for the d-Set Packing
instance (U,F , k) constructed above is also a solution
for d-Exact Set Cover with the same instance.
This is because each set in F is of cardinality d and
|U | = kd. Thus, and k pairwise disjoint sets in F
must cover U . We therefore have d-BRPC ≤lpt d-
Exact Set Cover, and since d-Exact Set Cover is
special case of d-Set Cover, we also have d-BRPC
≤lpt d-Set Cover. Finally, using the well-known
reduction (which can be viewed as linear parametric
transformation) from d-Exact Set Cover to Exact
Hitting Set with d-Bounded Occurrences, we
get that d-BRPC ≤lpt Exact Hitting Set with d-
Bounded Occurrences and d-BRPC ≤lpt Hitting
Set with d-Bounded Occurrences.

4.2 Graph-theoretic problems In the d-Red-
Blue Dominating Set problem, the input is a bipar-
tite graph G = (N ] T, E) with the degree of every
vertex v ∈ N at most d, and a parameter k. The goal



is to determine whether there exists a subset N ′ ⊆ N
of size at most k so that every vertex in T has at least
one neighbor in N ′. Again, d-Red-Blue Dominating
Set has a simple kernel of size O(kd) by assuring that
each vertex in N has a unique set of neighbors in T .
The d-Steiner Tree takes the same input but we are
asked whether there is a subset N ′ ⊆ N of size at most
k such that G[T ∪N ′] is connected.

Theorem 4.2. Unless coNP ⊆ NP/poly, d-Red-Blue
Dominating Set and d-Steiner Tree have no ker-
nels of sizes O(kd−3−ε) and O(kd−4−ε), respectively, for
any ε > 0.

Let us next consider two graph packing problems.
In the Kd Packing problem we are given graph G and a
parameter k, and the question is whether G contains at
least k vertex-disjoint cliques of size d. This problem has
a kernel of size O(kd) due to [13]. The Induced K1,d

Packing takes the same input but asks whether there
are k pairwise disjoint subset of vertices, each inducing
a d-star in G.

Theorem 4.3. Unless coNP ⊆ NP/poly, Kd Packing
and Induced K1,d Packing have no kernels of size
O(kd−4−ε) for any ε > 0.

5 Quasi-polynomial Lower Bounds

In this section we extend the state of the art of the ker-
nelization lower bounds mechanically in another direc-
tion. We will show that essentially all previously known
super-polynomial lower bound results can be strengthen
to super-quasi-polynomial lower bounds, assuming that
the exponential hierarchy is proper. For this, we will
use a recent quasi-polynomial analog of Yap’s Theorem
due to Pavan et al. [26]:

Lemma 5.1. ([26]) If NP ⊆ coNP/qpoly then the ex-
ponential hierarchy collapses to its third level.

The above result of Pavan et al. implies that to ob-
tain quasi-polynomial kernelization lower bounds under
the assumption that the exponential hierarchy is proper,
a quasi-polynomial analog of the Complementary Wit-
ness Lemma of Dell and van Melkebeek is needed. For-
tunately, Dell and van Melkebeek’s arguments, which
extend the ideas of Fortnow and Santhanam[16], can
easily be adapted to the quasi-polynomial case.

Lemma 5.2. Let L ⊆ {0, 1}∗ be a language and t :
N → N\{0} be quasi-polynomially bounded. If there is
a quasi-polynomial time oracle communication protocol
that decides ORn,t(n)(L) with cost O(t(n) log t(n)), then
L ∈ coNP/qpoly. This holds even when the first player
runs in conondeterministic quasi-polynomial time.

Theorem 5.1. Let L1, L2 ⊆ {0, 1}∗ ×N be two param-
eterized problems such that L̃1 is NP-hard. A composi-
tion from L1 to L2 and a kernel of quasi-polynomial size
for L2 implies that the exponential hierarchy collapses
to its third level.

Proof. Using a similar argument as in Lemma 2.3,
one can obtain a quasi-polynomial cost communication
protocol for L1, using the assumed quasi-polynomial-
size kernel for L2 along with the composition from
L1 to L2. Thus, by Lemma 5.2, we get that NP ⊆
coNP/qpoly, which in turn implies that the exponential
hierarchy collapses to its third level due to Lemma 5.1.

Since all previous super-polynomial lower bounds
were obtained via compositions, along with polynomial
parametric transformations which also preserves quasi-
polynomial kernels, the above theorem implies the
strengthening of all previous super-polynomial lower
bounds to super-quasi-polynomial lower bounds.

6 Conclusion

In this paper we used weak compositions to obtain new
kernelization lower-bounds for several natural parame-
terized problems such as d-Dimensional-Matching,
d-Set Packing, d-Set Cover, and Kd Packing.
There are many interesting directions for future research
that stem from our work. The most important one is to
close the gap between the upper and lower bounds for
the kernel sizes of the problems we discussed. This has
already been done for d-Bipartite Regular Perfect
Code [15], but the gap for d-Dimensional-Matching
remains open.
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