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Abstract. The framework of Bodlaender et al. (ICALP 2008, JCSS 2009) and
Fortnow and Santhanam (STOC 2008, JCSS 2011) allows us to exclude the
existence of polynomial kernels for a range of problems under reasonable
complexity-theoretical assumptions. However, some issues are not addressed by
this framework, including the existence of Turing kernels such as the “kerneliza-
tion” of LEAF OUT BRANCHING(k) into a disjunction over n instances each of
size poly(k). Observing that Turing kernels are preserved by polynomial para-
metric transformations (PPTs), we define two kernelization hardness hierarchies
by the PPT-closure of problems that seem fundamentally unlikely to admit ef-
ficient Turing kernelizations. This gives rise to the MK- and WK-hierarchies
which are akin to the M- and W-hierarchies of ordinary parameterized complex-
ity. We find that several previously considered problems are complete for the
fundamental hardness class WK[1], including MIN ONES d-SAT(k), BINARY

NDTM HALTING(k), CONNECTED VERTEX COVER(k), and CLIQUE parame-
terized by k log n. We conjecture that no WK[1]-hard problem admits a polyno-
mial Turing kernel. Our hierarchy subsumes an earlier hierarchy of Harnik and
Naor (FOCS 2006, SICOMP 2010) that, from a parameterized perspective, is re-
stricted to classical problems parameterized by witness size. Our results provide
the first natural complete problems for, e.g., their class V C1; this had been left
open.

1 Introduction

Kernelization, or data reduction, is a central concept in parameterized complexity, and
has important applications outside this field as well. Roughly speaking, a kernelization
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algorithm reduces an instance of a given parameterized problem to an equivalent in-
stance of size f(k), where k is the parameter of the input instance. Appropriately, the
function f() is referred to as the size of the kernel. A kernel with a good size guarantee is
very useful – whether one wants to solve a problem exactly, or apply heuristics, or com-
pute an approximation, it never hurts to first apply the kernelization procedure.1 It can
also be seen more directly as instance compression, e.g., for storing a problem instance
for the future use; see Harnik and Naor [18]. The common milestone for an efficient
kernelization is a polynomial kernel, i.e., a kernel with a polynomial size guarantee.
Several significant kernelization results can be found in the literature, sometimes using
non-trivial mathematical tools; see, e.g., the 2k-vertex kernel for VERTEX COVER [28],
the O(k2) kernel for FEEDBACK VERTEX SET [30], and the recent randomized poly-
nomial kernel for ODD CYCLE TRANSVERSAL [26].

Fairly recently, work by Bodlaender et al. [4] together with a result of Fortnow and
Santhanam [17] provided the first technique to rule out the existence of any polyno-
mial kernel for certain problems, assuming that NP � coNP/poly (and PH does not
collapse [31]). A series of further papers have applied this framework to concrete prob-
lems and developed it further, e.g., [13,12,5,11,21,22,14].

However, there are relaxed notions of efficient kernelization which are not ruled out
by any existing work, but which would still be useful in practice and interesting from a
theoretical point of view. Almost immediately after the appearance of the above lower
bounds framework, the question was raised whether there were notions of “cheating”
kernels. For example for the problem k-PATH which could circumvent the above lower
bounds by producing Turing kernels instead of standard many-one kernelizations [3].
Not long afterwards, the first example of such a cheating kernel appeared: Binkele-
Raible et al. [2] showed that the k-LEAF OUT-BRANCHING problem (given a directed
graph G and an integer k, does G contain a directed tree with at least k leaves?) does
not admit a polynomial kernel unless NP � coNP/poly, but does admit one (with O(k3)
vertices) if the root of the tree is fixed, implying a Turing kernel in the form of a dis-
junction over n instances, each of size polynomial in k. There are also simpler problems
sharing the same behavior; for example, the problem of CLIQUE parameterized by max-
imum degree is trivially compatible with the lower-bound frameworks, implying that it
has no polynomial many-one kernel unless NP � coNP/poly, but admits a very simple
Turing kernel into n instances of k vertices (by taking the neighborhood of each vertex).
We will call such a disjunctive Turing kernel an OR-kernel. We observe that many of
the positive aspects of standard (many-one) polynomial kernels are preserved by OR-
kernels, or even generally Turing kernels; in particular the algorithmic consequences
(e.g., a Turing kernel with polynomial individual instance sizes for a problem in NP
implies an algorithm with a running time of 2k

O(1)

nO(1), same as for a polynomial
many-one kernel).

The question of the extent to which such Turing kernels exist is theoretically very
interesting and one of the most important problems in the field. Some restricted forms
of Turing kernels, e.g., polynomial AND-kernels, can already be excluded by the ex-
isting framework, as they are special cases of polynomial kernels which may use co-
nondeterministic polynomial time (cf. [12,22,26]). However, for OR-kernels or Turing

1 This is assuming that the kernel preserves solution values, which most do.
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kernels the current framework does not apply (as also witnessed by the k-LEAF OUT-
BRANCHING and CLIQUE by max degree problems). It is also unclear if the framework
could be adapted to deal with them. Instead, we take an approach common in com-
plexity theory, namely that of defining an appropriate notion of hardness, and studying
problems that are complete under this notion. We start from a set of problems for which
we conjecture that none of them has a polynomial Turing kernel, and show that they are
equivalent under PPT-reductions (which preserve existence of polynomial Turing ker-
nels). The result is a robust class of hardness of Turing kernelization, dubbed WK[1],
whose complete problems include central problems from different areas of theoretical
computer science. While we have no concrete evidence that our conjecture holds, we
feel that the abundance of WK[1]-complete problems, where Turing-kernelization is
found for none of them, might suggest its validity.

WK[1]-hard problems. A cornerstone problem of WK[1] is the k-step halting prob-
lem for non-deterministic Turing machines parameterized by k logn. To see why this
is a powerful problem, and why an efficient Turing kernel would seem unlikely, con-
sider the k-clique problem. Given a graph G with n vertices and an integer k, it is
easy to construct a Turing machine which checks in poly(k) non-deterministic steps
whether G contains a k-clique (by using a number of states polynomial in n). On the
other hand, an OR-kernel for the problem (or more generally, a polynomial Turing ker-
nel) would require reducing k-clique to a polynomial number of questions of size poly-
nomial in k logn (e.g., poly(n) induced subgraphs of G, each of size poly(k logn),
which are guaranteed to cover any k-clique of G). In fact, the above-mentioned halting
problem captures not only clique, but all problems where a witness of t bits can be
verified in poly(t, logn) time (e.g., SUBGRAPH ISOMORPHISM).

Other WK[1]-complete problems include MIN ONES d-SAT, the problem of finding
a satisfying assignment with at most k true variables for a d-CNF formula, parameter-
ized by the solution size k; HITTING SET parameterized by the number of sets or hy-
peredges m; and CONNECTED VERTEX COVER parameterized by the solution size k.
Of these, we in particular want to single out MIN ONES d-SAT, which captures all min-
imization problems for which the consistency of a solution can be locally verified (by
looking at combinations of d values at a time). For example, this includes the H-FREE

EDGE MODIFICATION(k) problems, where H is a finite, fixed set of forbidden induced
subgraphs, and the goal is to remove or add k edges in the input graph in order to obtain
a graph with no induced subgraph in H [8].

Extending the hardness class WK[1], we also define a hierarchy of hardness classes
WK[t] and MK[t] for t ≥ 1, mirroring the W- and M-hierarchies of traditional parame-
terized complexity; see [16]. We note that there are also strong similarities to the work
of Harnik and Naor [18], in particular to the VC-hierarchy (which is defined around the
notion of witness length for problems in NP). However, the notion of a parameter seems
more general and robust than witness length; consider for example the volume of work
in FPT on structural parameters such as treewidth. We also feel that the connections
to the traditional FPT hardness classes (see Section 3) flesh out and put into context
Harnik and Naor’s work, and the link to the Turing kernel question adds interest to the
separation question. Still, the main focus of our work is the hardness class WK[1].
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We hope that our conjecture, that WK[1] does not have polynomial Turing kernels,
will inspire other researchers to revisit the kernelization properties of problems which
have been shown not to admit standard polynomial kernels unless PH collapses, but for
which hardness for the above-mentioned class is less obvious. In particular, we leave
open the WK[1]-hardness of k-PATH, the problem for which the existence of Turing
kernels was originally asked in [3].

2 Preliminaries

We begin our discussion by formally defining some of the main concepts used in this
paper, and by introducing some terminology and notation that will be used throughout.
All problem definitions are deferred to the full version of this paper [20]. We use [n] to
denote the set of integers {1, . . . , n}.

Definition 1 (Kernelization). A kernelization algorithm, or, in short, a kernel for a
parameterized problem L ⊆ Σ∗ × N is a polynomial-time algorithm that on a given
input (x, k) ∈ Σ∗ × N outputs a pair (x′, k′) ∈ Σ∗ × N such that (x, k) ∈ L ⇔
(x′, k′) ∈ L, and |x′|+k′ ≤ f(k) for some function f . The function f above is referred
to as the size of the kernel.

In other words, a kernel is a polynomial-time reduction from a problem to itself that
compresses the problem instance to a size depending only on the parameter. If the size
of a kernel for L is polynomial, we say that L has a polynomial kernel. In the interest
of robustness and ease of presentation, we relax the notion of kernelization to allow the
output to be an instance of a different problem. This has been referred to as a generalized
kernelization [4] or bikernelization [1]. The class of all parameterized problems with
polynomial kernels in this relaxed sense is denoted by PK.

Definition 2 (Turing Kernelization). A Turing kernelization for a parameterized prob-
lem L ⊆ Σ∗×N is a polynomial-time algorithm with oracle access to a parameterized
problem L′ that can decide whether an input (x, k) is in L using queries of size bounded
by f(k), for some computable function f . The function f is referred to as the size of the
kernel.

If the size is polynomial, we say that L has a polynomial Turing kernel. The class of all
parameterized problems with polynomial Turing kernels is denoted by Turing-PK.

Definition 3 (Polynomial Parametric Transformations [7]). Let L1 and L2 be two
parameterized problems. We write L1 ≤ppt L2 if there exists a polynomial time com-
putable function Ψ : {0, 1}∗ × N → {0, 1}∗ × N and a constant c ∈ N, such that for
all (x, k) ∈ Σ∗ × N, if (x′, k′) = Ψ(x, k) then (x, k) ∈ L1 ⇐⇒ (x′, k′) ∈ L2, and
k′ ≤ ckc. The function Ψ is called a polynomial parameter transformation (PPT for
short). If L1 ≤ppt L2 and L2 ≤ppt L1 we write L1 ≡ppt L2.

Proposition 1. Let L1, L2, and L3 be three parameterized problems.

– If L1 ≤ppt L2 and L2 ≤ppt L3 then L1 ≤ppt L3.
– If L1 ≤ppt L2 and L2 ∈ PK (resp. Turing-PK) then L1 ∈ PK (resp. Turing-PK).
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We denote parameterizations in parentheses after the problem name, for example,
CLIQUE(k logn). In this example, k is the solution size, and n the size of the input.
(Recall that CLIQUE(k) is one of the fundamental hard problems for parameterized
complexity, and unlikely to admit a kernel of any size [16]; however, under a parame-
ter p = k logn it has a trivial kernel of size 2p.)

Note that, if a problem Q is solvable in 2k
O(1)

nO(1) time, then Q(k)≡ppt Q(k logn).

3 The WK- and MK-Hierarchies

In this section we introduce our hierarchies of inefficient kernelizability, the MK- and
WK-hierarchies. Relations to the so-called VC-hierarchy of Harnik and Naor [18] are
discussed in Section 3.1. To begin with, for t ≥ 0 and d ≥ 1, we inductively define the
following classes Γt,d and Δt,d of formulas following [16]:

Γ0,d := {λ1 ∧ · · · ∧ λc : c ∈ [d] and λ1, . . . , λc are literals},
Δ0,d := {λ1 ∨ · · · ∨ λc : c ∈ [d] and λ1, . . . , λc are literals},
Γt+1,d := {∧i∈I δi : I is a finite non-empty set and δi ∈ Δt,d for all i ∈ I},
Δt+1,d := {∨i∈I γi : I is a finite non-empty set and γi ∈ Γt,d for all i ∈ I}.

Thus, Γ1,3 is the set of all 3-CNF formulas, and Γ2,1 is the set of all CNF formulas.
Given a class Φ of propositional formulas, we let Φ+, Φ− ⊆ Φ denote the restrictions of
Φ to formulas containing only positive and negative literals, respectively. For any given
Φ, we define two parameterized problems:

– Φ-WSAT(k logn) is the problem of determining whether a formula φ ∈ Φ with n
variables has a satisfying assignment of Hamming weight exactly k, parameterized
by k log n.

– Φ-SAT(n) is the problem of determining whether a formula φ ∈ Φ with n variables
is satisfiable, parameterized by n.

In particular, we will be interested in Γt,d-WSAT(k logn) and Γt,d-SAT(n).
We now reach our class definitions. For a parameterized problem L ⊆ Σ∗ × N, we

let [L]≤ppt denote the closure of L under polynomial parametric transformations. That
is, [L]≤ppt := {L′ ⊆ Σ∗ × N : L′ ≤ppt L}.

Definition 4. Let t ≥ 1 be an integer. The classes WK[t] and MK[t] are defined by

– WK[t] :=
⋃

d∈N
[Γt,d-WSAT(k logn)]≤ppt .

– MK[t] :=
⋃

d∈N
[Γt,d-SAT(n)]≤ppt .

The naming of the classes in our hierarchies comes from the close relationship of the
MK- and WK-hierarchies to the M- and W-hierarchies of traditional parameterized
complexity [16]. Roughly speaking, WK[t] and MK[t] are reparameterizations by a
factor of logn (or log of the instance size) of the traditional parameterized complexity
classes W[t] and M[t] (although W[t] and M[t] are closed under FPT reductions, which
may use superpolynomial time in k).

There are also close connections to the so-called subexponential time S-hierarchy
(see [16, Chapter 16]); specifically, S[t] and MK[t] are defined from the same starting
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problems, using closures under different types of reduction; see also Cygan et al. [10].
We further note that [10] asked as an open problem, a reduction which in our terms
would go from an MK[2]-complete problem to one in WK[1], and our work suggests
the difficulty of producing one (see Theorem 2).

We show the following complete problems for our hierarchy.

Theorem 1 (�2). Let t ≥ 1. The following hold.

– Γ−
1,2-WSAT(k log n) is WK[1]-complete.

– Γ−
t,1-WSAT(k log n) is WK[t]-complete for odd t > 1.

– Γ+
t,1-WSAT(k log n) is WK[t]-complete for even t > 1.

– Γ1,d-SAT(n) is MK[1]-complete for every d ≥ 3.
– Γt,1-SAT(n) is MK[t]-complete for t ≥ 2.

Theorem 1 above shows that the traditional problems used for showing completeness
in the W- and M-hierarchies have reparameterized counterparts which are complete for
our hierarchy. The theorem is proven using a set of PPTs from the specific class-defining
problems to the corresponding target problem in the theorem. Our main contribution
is a PPT for the first item, for which previous proofs used FPT-time reductions. The
remaining items are either easy or well-known.

We now proceed to show the class containments in our hierarchy. The main contain-
ments are as follows.

Theorem 2 (�). MK[1] ⊆ WK[1] ⊆ MK[2] ⊆ WK[2] ⊆ MK[3] ⊆ · · · ⊆ EXPT.

We also study a few further particular classes. First, let PKNP denote the class of
parameterized problems with polynomial kernels whose output problem lies in NP. We
have the following relationship.

Lemma 1 (�). MK[1] = PKNP.

Proof (sketch). If a problem has a polynomial kernel within NP, then we may first
kernelize, then reduce to 3-SAT by the NP-completeness of the latter. Conversely, any
problem in MK[1] has a PPT to d-SAT(n) for some constant d, which (as the latter has
bounded size) forms a kernelization within NP. 
�

Next, for a problemL, we define a parameterized problem OR(L)(�) where the input
is a set of instances x1, . . . , xt of L, each of length at most �, and the task is to decide
whether xi ∈ L for at least one instance xi.

Lemma 2 (�). Let L be an NP-complete language. Then MK[1] ⊆ [OR(L)(�)]≤ppt ⊆
WK[1], where the first inclusion is strict unless NP ⊆ coNP/poly, and the second is
strict unless every problem in WK[1] has a polynomial OR-kernel.

Proof (sketch). The first containment is trivial; the second can be given via reduction to
the BINARY NDTM HALTING problem (see Section 4). The first consequence follows
from Fortnow and Santhanam [17]; the second follows since OR(L) has an OR-kernel,
and OR-kernels are preserved by PPTs. 
�
2 The proofs for lemmas and theorems denoted by a star are deferred to the full version [20].
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For AND(L), and problems with Turing kernels more generally, no similar con-
tainment is known. However, our hierarchy can still be useful for AND-compositional
problems, in showing them to be hard for some level.

3.1 Comparison with the VC-Hierarchy

We now discuss the relations between the VC-hierarchy of Harnik and Naor [18] and
the MK- and WK-hierarchies defined in this paper. Let us review some definitions. An
NP-language L is for the purposes of this section defined by a pair (RL, k), where
RL(·, ·) is a polynomial-time computable relation and k(x) = |x|O(1) a polynomial-
time computable function, and x ∈ L for an instance x if and only if there is some
string y with |y| ≤ k(x), such that RL(x, y) holds. The string y is called the witness
for x. This naturally defines a parameterization of L, with parameter k(x); the resulting
problem is FPT (with running time O∗(2k)). We refer to this parameterized problem
as the direct parameterization of (RL, k). Harnik and Naor consider the feasibility of a
(possibly probabilistic) compression of an instance x of L into length poly(k(x)), in a
sense essentially equivalent to our (relaxed) notion of kernelization; see [18] for details.

Before we give the technical results, let us raise two points. First, Harnik and Naor
deal solely with problems where the parameter is the length k(x) of a witness. Although
this always defines a valid parameter (as we have seen), it is not clear that every reason-
able parameterization of an NP-problem can be interpreted as a witness in this sense.
Second, although Harnik and Naor are rather lax with the choice of witness (frequently
letting it go undefined), we want to stress that the choice of witness can have a big
impact on the kernelization complexity of a problem. Consider as an example the case
of HITTING SET (treated later in this paper). Let n denote the number of vertices of
an instance, m the number of edges, and k the upper bound on solution size; note that
the total coding size is O(mn). We will find that the problem is WK[1]-complete when
parameterized by m, MK[2]-complete under the parameter n, and WK[2]-complete un-
der the parameter k logn. The two latter both represent plausible choices of witnesses;
a witness of length m is less obvious (or natural), but there is a simple witness of length
m log k ≤ m logm obtained by describing a partition of the edges into k sets. One may
also consider structural parameters such as treewidth (e.g., of the bipartite vertex/edge
incidence graph), for which a corresponding short witness seems highly unlikely (but
which can be shown to be MK[2]-hard). That said, it is not hard to see that every prob-
lem in the WK- and MK-hierarchies has a corresponding witness, by the PPT-reduction
that proves its class membership.

For reasons of space, we give only a brief summary of the results; see the full ver-
sion [20] for more details.

Theorem 3 (�). Let L be an NP-language defined by (RL, k), and let Q be its direct
parameterization. The following hold.

1. L is contained in (hard for, complete for) VCor if and only if Q is contained in (hard
for, complete for) the PPT-closure of OR(3-SAT).

2. L is contained in VC1 (VC1-hard, VC1-complete) if and only if Q is contained in
WK[1] (WK[1]-hard, WK[1]-complete).
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3. L is contained in VCt (VCt-hard, VCt-complete) for t > 1 if and only if Q is
contained in MK[t] (MK[t]-hard, MK[t]-complete).

Thus, we answer a question left open in [18], of finding a natural problem complete
for VC1 (as well as some minor questions about specific problem placements).

4 Complete Problems for WK[1]

In this section we show that several natural problems are complete for our fundamen-
tal hardness class WK[1] and thus exemplify its robustness. Our starting point will
be CLIQUE(k logn) which is clearly equivalent to Γ−

1,2-WSAT(k log n); the latter is
WK[1]-complete by Theorem 1.

Theorem 4. CLIQUE(k logn) is complete for WK[1].

4.1 Basic Problems

This section establishes the following theorem that covers some basic problems which
will be convenient for showing WK[1]-hardness and completeness for other problems.
Standard many-one polynomial kernels for these problems were excluded in previous
work [4,24,25,13].

Theorem 5. The following problems are all complete for WK[1]:

– BINARY NDTM HALTING(k) and NDTM HALTING(k logn).
– MIN ONES d-SAT(k) for d ≥ 3, with at most k true variables.
– HITTING SET(m) and EXACT HITTING SET(m), with m sets.
– SET COVER(n) and EXACT SET COVER(n), with n elements.

The following colorful variants are helpful for our reductions.

Lemma 3 ([15,13]). The following equivalences hold.

– MULTICOLORED CLIQUE(k logn) ≡ppt CLIQUE(k logn).
– MULTICOLORED HITTING SET(m) ≡ppt HITTING SET(m).

We now proceed with the reductions. For many problems, we will find it convenient
to show hardness by reduction from EXACT HITTING SET(m) or HITTING SET(m);
hence we begin by showing the completeness of these problems. We give a chain of
reductions from CLIQUE(k logn), via EXACT HITTING SET(m) and NDTM HALT-
ING(k logn), and back to CLIQUE(k logn), closing the cycle. After this we will treat
the HITTING SET(m) problem. Note that NDTM HALTING(k logn) and BINARY

NDTM HALTING(k) (the problem restricted to machines with a binary tape alphabet)
are easily PPT-equivalent.

Lemma 4 (�). MULTICOLORED CLIQUE(k logn) ≤ppt EXACT HITTING SET(m).
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Proof (sketch). Let the input be a graphG = (V,E) with coloring function c : V → [k].
Assume V = [n], and let b�(v) be the �:th bit in the binary expansion of v. We create a
set family F ⊆ 2E with sets Fi,j = {uv ∈ E : c(u) = i, c(v) = j} for 1 ≤ i < j ≤ k,
and Fi,j,j′,� = {uv ∈ E : c(u) = i, c(v) = j, b�(u) = 1}∪{uv ∈ E : c(u) = i, c(v) =
j′, b�(u) = 0} for all color pairs (i, j) and (i, j′) (e.g., for i, j, j′ ∈ [k] with i �= j, j′

and j < j′), 1 ≤ � ≤ �logn�. By the first set family, exactly one edge per color class is
selected in a solution; the second family ensures that the selections are consistent (i.e.,
for each color class i, all incident edges are incident on the same vertex u). 
�
Lemma 5 (�). EXACT HITTING SET(m) ≤ppt NDTM HALTING(k logn).

Proof (sketch). Let F = {F1, . . . , Fm} be a set family on universe U = [n]; we will
create a NDTM with tape alphabet [n] which verifies whether F has an exact hitting
set. We may assume n ≤ 2m. In the first phase, for each i ∈ [m] we put the ID of a
member ui of Fi in cell i; in subsequent phases, we verify that no set Fi is hit twice
(e.g., if uj �= ui, then uj /∈ Fi). This is easily done in poly(m) steps, by a machine with
poly(n+m) states; thus k logn = mO(1) and we are done. 
�
Lemma 6 (�). BINARY NDTM HALTING(k) ≤ppt MIN ONES 3-SAT(k).

Proof (sketch). Let M be a Turing machine with � transitions in the state diagram. We
will create a 3-CNF formula φ that has a satisfying assignment of Hamming weight
at most k′, k′ = kO(1), if and only if M accepts within k steps. We use variables
Me,t, e ∈ [�], t ∈ [k], designating that M uses transition e of the state diagram as
the t:th execution step, along with auxiliary variables tracing the machine state, head
position, and tape contents. By using the log-cost selection formulas of [25], we can
ensure that exactly one variable Me,t is true for each t, at the cost of an extra solution
weight of k log �. Given this, the consistency of an assignment can be enforced using
only local (3-ary) conditions (details omitted). We also require that the final state is
accepting. With some care, one can ensure that every satisfying assignment has the
same weight k′ = poly(k, log �). Since the problem is FPT, we may assume log � ≤ k,
thus we have polynomial reduction time and parameter growth, i.e., a PPT. 
�

The following lemma is a direct consequence of Theorem 1 in Section 3.

Lemma 7 (�). MIN ONES d-SAT(k) ≤ppt CLIQUE(k logn) for every fixed d.

The remaining problems in Theorem 5 for which we need to show completeness are
HITTING SET(m), SET COVER(n), and EXACT SET COVER(n). Since it is well known
that HITTING SET(m) ≡ppt SET COVER(n) and EXACT HITTING SET(m) ≡ppt EX-
ACT SET COVER(n), we finish the proof of Theorem 5 by proving WK[1]-completeness
for HITTING SET(m).

Lemma 8 (�). HITTING SET(m) is WK[1]-complete.

4.2 Further Problems

We briefly list further problems which we have shown to be WK[1]-complete or WK[1]-
hard. LOCAL CIRCUIT SAT(k logn) was defined by Harnik and Naor, for defining
their VC-hierarchy [18]. The remaining proofs are adaptations of lower bounds proofs
by Bodlaender et al. [7] and Dom et al. [13].
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Theorem 6 (�). The following problems are WK[1]-complete.

– LOCAL CIRCUIT SAT(k logn).
– MULTICOLORED PATH(k) and DIRECTED MULTICOLORED PATH(k).
– MULTICOLORED CYCLE(k) and DIRECTED MULTICOLORED CYCLE(k).
– CONNECTED VERTEX COVER(k).
– CAPACITATED VERTEX COVER(k).
– STEINER TREE(k + t), for solution size k and t terminals.
– SMALL SUBSET SUM(k) (see [13] for parameter definition).
– UNIQUE COVERAGE(k), where k is the number of items to be covered.

Theorem 7 (�). The following problems are WK[1]-hard.

– DISJOINT PATHS(k) and DISJOINT CYCLES(k).

5 Problems in Higher Levels

In this section we investigate the second level of the MK- and WK-hierarchies, and
present some complete and hard problems for these classes.

MK[2]-complete problems. According to Theorem 1, MK[2] is the PPT-closure of the
classical CNF satisfiability problem where the parameter is taken to be the number
of variables in the input formula. The PPT-equivalence of this problem to HITTING

SET(n) and SET COVER(m) is well known.

Theorem 8. HITTING SET(n) and SET COVER(m) are complete for MK[2].

Heggernes et al. [19] consider RESTRICTED PERFECT DELETION(|X |) and RE-
STRICTED WEAKLY CHORDAL DELETION(|X |), where the input is a graphG, a set X
of vertices of G such that G−X is perfect (resp. weakly chordal), and an integer k, and
the task is to select at most k vertices S ⊆ X such that G− S is perfect (resp. weakly
chordal). We get the following corollary from Theorem 8 and PPTs given in [19].

Corollary 1. RESTRICTED PERFECT DELETION(|X |) and RESTRICTED WEAKLY

CHORDAL DELETION(|X |) are hard for MK[2].

WK[2]-complete problems. Due to space limitations we only state the following com-
pleteness and hardness results for WK[2] and defer the proofs to the full version.

Theorem 9 (�). The following problems are complete for WK[2]:

– HITTING SET(k logn) and SET COVER(k logm).
– DOMINATING SET(k logn) and INDEPENDENT DOMINATING SET(k logn).
– STEINER TREE(k logn)

From Theorem 9, we immediately get the following corollary via PPTs by Loksh-
tanov [27] and Heggernes et al. [19].

Corollary 2. The following problems are all hard for WK[2]:
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– WHEEL-FREE DELETION(k logn).
– PERFECT DELETION(k logn).
– WEAKLY CHORDAL DELETION(k logn).

For the first four problems in Theorem 9 the results follow easily (see [20]), so let us
focus on the more interesting case of STEINER TREE(k logn). While WK[2]-hardness
for this problem follows immediately from e.g. the PPT from HITTING SET(k logn)
given in [13], showing membership in WK[2] is more challenging. To facilitate this
and other non-trivial membership proofs, we consider the issue of a machine char-
acterization of WK[2], similarly to the WK[1]-complete NDTM HALTING(k logn)
problem. The natural candidate would be MULTI-TAPE NDTM HALTING(k logn), as
this same problem with parameter k is W[2]-complete [9]. However, while the prob-
lem with parameter k logn is easily shown to be WK[2]-hard, we were so far unable to
show WK[2]-membership. On the other hand, the following extension of a single-tape
non-deterministic Turing machine leads to a WK[2]-complete problem, which we name
NDTM HALTING WITH FLAGS.

Definition 5. A (single-tape, non-deterministic) Turing machine with flags is a stan-
dard (single-tape, non-deterministic) Turing machine which in addition to its working
tape has access to a set F of flags. Each state transition of the Turing machine has the
ability to read and/or write a subset of the flags. A transition that reads a set S ⊆ F of
flags is only applicable if all flags in S are set. A transition that writes a set S ⊆ F of
flags causes every flag in S to be set. In the initial state, all flags are unset. Note that
there is no operation to reset a flag.

Theorem 10. NDTM HALTING WITH FLAGS(k log n) is WK[2]-complete.

Proof. Showing WK[2]-hardness is easy by reduction from HITTING SET(k logn). In
fact, the hitting set instance can be coded directly into the flags, without any motion
of the tape head – simply construct a machine that non-deterministically makes k non-
writing transitions, each corresponding to including a vertex in the hitting set, followed
by one verification step. The machine has m flags, one for every set in the instance,
and a step corresponding to selecting a vertex v activates all flags corresponding to sets
containing v. Finally, the step to the accepting state may only be taken if all flags are
set. By assuming logm ≤ k logn (or else solving the instance exactly) we get a PPT.

Showing membership in WK[2] can be done by translation to Γ2,1-WSAT(k logn).
The transition is similar to that in Lemma 6. The only complication is to enforce con-
sistency of transitions which read and write sets of flags, but this is easily handled.
Let Me,t signify that step number t of the machine follows edge e of the state diagram
(as in Lemma 6). If transition e has a flag f as a precondition, then we simply add a
clause

(¬Me,t ∨Mei1 ,1
∨ . . . ∨Meim ,1 ∨ . . . ∨Mei1 ,t−1 ∨ . . . ∨Meim ,t−1),

where ei1 , . . . , eim is an enumeration of all transitions in the state diagram which set
flag f . The rest of the reduction proceeds without difficulty. 
�
Lemma 9 (�). STEINER TREE(k logn)≤pptNDTM HALTING WITH FLAGS(k logn).
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6 Discussion

We have defined a hierarchy of PPT-closed classes, akin to the M- and W-hierarchy
of parameterized intractability, in order to build up a completeness theory for polyno-
mial (Turing) kernelization. The fundamental hardness class is called WK[1] and we
conjecture that no WK[1]-hard problem admits a polynomial Turing kernelization. At
present, the state of the art in lower bounds for kernelization does not seem to provide
a way to connect this conjecture to standard complexity assumptions. However, there
is collective evidence by a wealth of natural problems that are complete for WK[1] and
for which polynomial Turing kernels seem unlikely. (Recall that admittance of Turing
kernels is preserved by PPTs and hence a single polynomial Turing kernel would trans-
fer to all WK[1] problems.) Of course, our examples provide only a partial image of the
WK[1] landscape. For example, the various kernelizability dichotomies that have been
shown for CSP problems [25,23] can be shown to imply dichotomies between prob-
lems with polynomial kernels and WK[1]-complete problems (and in some cases the
third class of W[1]-hard problems). We take this as further evidence of the naturalness
of the class.

On the more structural side, we have discussed the relation to the earlier VC-hierarchy
of Harnik and Naor [18] which, from our perspective, is restricted to NP-problems pa-
rameterized by witness size. Under this interpretation their hierarchy folds into ours,
with the levels of their hierarchy mapping to a subset of the levels of our hierarchy.

Many questions remain. One is the WK[1]-hardness of PATH(k) and CYCLE(k);
for these problems, we have only lower bound proofs in the framework of Bodlaender
et al. [4], leaving the question of Turing kernels open. There are also several prob-
lems, including the work on structural graph parameters by Bodlaender, Jansen, and
Kratsch, e.g. [6], which we have not investigated. It is also unknown whether MULTI-
TAPE NDTM HALTING(k log n) is in WK[2]. Furthermore, it would be interesting to
know some natural parameterized problems which are WK[2]-complete under a stan-
dard parameter (e.g., k rather than k logn).

Still, the main open problem is to provide (classical or parameterized) complexity
theoretical implications of polynomial Turing kernelizations for WK[1]. More modest
variants of this goal include excluding only OR-kernels, and/or considering the general
problem of Turing machine acceptance parameterized by witness length.
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