
A Study of Stability in Data Privacy

by

Xi Wu

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2016

Date of final oral examination: 07/11/2016

The dissertation is approved by the following members of the Final Oral Committee:

Somesh Jha, Professor, Computer Sciences

Jeffrey F. Naughton, Google

Anhai Doan, Professor, Computer Sciences

C. David Page Jr., Professor, Biostatistics and Medical Informatics

Stphen J. Wright, Computer Sciences

© Copyright by Xi Wu 2016

All Rights Reserved

i

To my wife Zichen, daughter Naomi and my parents.

ii

acknowledgments

I would not have been able to complete this dissertation without the

guidance and encouragement of Professor Jeffrey Naughton. Jeff is always

patient and supportive and perhaps most importantly, he taught me a les-

son that would probably benefit my entire life: “Always remember how you
reached there.” It is by retrospection and learning from it, either it is now

a success or failure, that one can grow and perhaps seizes opportunities.

I am also indebted to my coadvisor Professor Somesh Jha, who has

provided me invaluable guidance in identifying research projects and

connecting me to the right people. Somesh is very generous in helping his

students, and especially in sharing his philosophy on research and life.

Having discussions with him is purely enlightening. I owe him my deep

gratitude.

It is very fortunate for me to be able to talk to and work with several

prominent professors: Professor Dieter van Melkebeek taught me a lot

of theory of computing in the first two years of my PhD study, laying a

strong foundation for my research. Professor Kamalika Chadhrui (from

UCSD) taught me a lot of machine learning and differential privacy. I had

some illuminating and insightful discussions with Professor Jin-yi Cai

and Professor Stephen J. Wright. Finally, thanks to Anhai Doan and David

J. Page for sitting in my defense commitee and provided me extensive and

valuable feedbacks.

Over the years I have also been fortunate to work with a group of

prominent students at UW-Madison, and I benefit significantly from talk-

ing to them. A partial list (listed alphabetically, and apologies ahead if I

did not mention your name here) includes Matthew Anderson, Siddarth

Barman, Matthew, Fredrikson, Xixuan Feng, Heng Guo, Yeye He, Arun

Kumar, Jiexing Li, Yinan Li, Conghan Lim, Lanyue Lu, Xiang Peng, David

Malec, Gautam Prakriya, Linhai Song, Sanketh Nalli, William Umboh,

iii

Wentao Wu, Tyson Williams, Ce Zhang. Special thanks goes to Wen-

tao, with whom we shared an office, had many intensive and exciting

discussions, and wrote papers together.

Last but not least, I would like to thank my family. My wife Zichen

Qiu has provided me love and support throughout all these years, without

which I do not think I can finally arrive at this point. Also, whenever I

felt frustrated, my daughter Naomi can always manage bringing me out

of it, to which I give special thanks here. My parents (Zhenmin Wu and

Meng Wan) and aunt (Zhi Wan) have also supported me all these years,

though I am thounds of miles away from them. I love you all.

iv

contents

Contents iv

List of Tables vi

List of Figures vii

Abstract viii

1 Introduction 1

1.1 Contributions . 3

1.2 Related Work . 7

2 Preliminaries 10

2.1 Machine Learning . 10

2.2 Optimization . 13

2.3 Differential Privacy . 16

2.4 Boolean Analysis . 17

3 Differentially Private Stochastic Gradient Descent for in-RDBMS

Analytics 20

3.1 Introduction . 21

3.2 Private SGD . 24

3.3 Empirical Evaluation 41

4 Differential Privacy and Model Inversion Attacks 57

4.1 Introduction . 58

4.2 Differential Privacy and Stability Theory 64

4.3 On Applications and Previous Work 77

4.4 Empirical Study . 79

v

5 A Formal Study of Model Inversion Attacks 92

5.1 Introduction . 93

5.2 A Methodology for Formalizing MI Attacks 96

5.3 Black-Box MI Attacks 107

5.4 White-Box MI Attacks 119

5.5 Connections with Other Cryptographic Notions 126

6 Conclusion and Future Directions 131

References 133

vi

list of tables

3.1 Parameters. 25

3.2 Datasets. 49

3.3 Step Sizes . 51

5.1 Modeling Fredrikson et al. 103

vii

list of figures

3.1 System architecture . 47

3.2 Test accuracy . 52

3.3 The effect of number of passes and mini-batch size 53

3.4 Runtimes of the implementations 54

4.1 Classification accuracy on the diabetes dataset 83

4.2 Model accuracy: compare with the functional mechanism . . 84

4.3 Model accuracy: Further comparison. 85

4.4 The risk of mortality, hemorrhage, and stroke 85

4.5 Model accuracy of objective perturbation 86

4.6 MI attack: output perturbation vs. functional mechanism . . 88

4.7 Model invertibility: data-independent and oracle methods . . 88

4.8 Tuned output perturbation with increasingly larger training sets 89

viii

abstract

This thesis is about stability. Technically, it is about a tradeoff between

computing something interesting and keeping the output “stable.” More

philosophically, it is about a life tradeoff that I have been struggling to

balance – doing something exciting yet maintaining a “stable” life. Since

life is difficult, it suggests that the technical tradeoff that I am facing must

be challenging as well.

More precisely, this thesis looks at the tradeoff from the angle of data

privacy, where one wants to compute interesting statistics from the data

collected from a group of individuals, while protecting the “privacy” of

each participant. This problem has attracted tremendous attention in both

academia and industry, as the rapidly growing capability of collecting and

analyzing individual data has brought significant concerns about privacy.

As “privacy” is inherently social and personal, it is not surprising

that there are many different data privacy notions, and probably there

will not be an end in defining new ones. A thesis we put forth is that,

though different as they may appear, data privacy notions are essentially
all about stability (though possibly different forms of it). In fact, the concept

of stability comes in so naturally that somehow it has to be true – the

“sensitive” data of a participant should not cause abrupt changes to the

statistics computed, otherwise his sensitive data is somehow “leaked” and

his privacy is broken.

We support this thesis by studying data privacy in the setting of ma-

chine learning. In the first part, we study differentially private stochastic
gradient descent. Differential privacy has become the gold standard for

protecting data privacy since the last decade, and its core is about stability

of an algorithm. Stochastic gradient descent (SGD), on the other hand,

is a fundamental optimization algorithm that powers various machine

learning tasks. In this part, we improve the state-of-the-art differentially

ix

private SGD: Not only our algorithms yield substantially better test ac-

curacy, but also they are easier to implement and run faster. In fact, the

analysis of our new algorithms is also simple and modular. All of these

improvements come from a novel analysis about the “global” stability

of SGD, in contrast to previous work which analyze the “local” stability

of each update and compose them at then end. Our analysis leverages

well-known expansion properties of gradient updates.

In the second part of this thesis we move from the core differential pri-
vacy to its boundary. We note that an intriguing work by Fredrikson et

al. (USENIX Security 2014) studied model inversion attacks, which try to

back out sensitive data of an individual using a machine learning model.

To counter these attacks, the authors used, naturally, differential privacy.

We, however, demonstrate that differential privacy is orthogonal to model

inversion attacks. In fact, a simple thought experiment already reveals

that differential privacy is not even designed to protect model inversion

attacks. We go on to quantify this “orthogonality:” By studying the stabil-
ity of empirical risk minimization, on one hand we significantly improve

the privacy-utility tradeoff compared to the functional mechanism, which

is used to train regression models by Fredrikson et al. On the other hand,

we quantitatively show that as the privacy-utility tradeoff improves, the

models become more susceptible to model inversion attacks.

Finally, we study model inversion attacks. Interestingly as it turns

out, the additional invertibility from being able to access a model origi-

nates from a different form of stability – the “stability” of a model with

respect to “sensitive features.” Note that this supports our thesis again:

Since machine learning models are statistical, the predictions made by

evaluating these models (as functions) are also “statistical;” and abrupt

change of the statistical predictions with respect to change of the sensitive

features indicates privacy losses, which are “model inversions.” More

x

technically, we connect model inversion attacks to the influence theory1

in the analysis of Boolean functions. Our study also unveils intriguing

new phenomena and questions.

1Note that the influence of an object is about the “instability” of the object.

1

1 introduction

The first antonym of “stability:” insecurity.

— Merriam-Webster Thesaurus

The ability to collect and process massive amounts of data has sig-

nificantly transformed our society. Large-scale data analyses, ranging

from computing simple statistics to constructing highly sophisticated

machine learning models, are widely applied to extract valuable patterns

from data in domains such as personalized medicine, finance, web search

histories and social networks. For these domains, there has also been an

ever growing concern about individuals’ privacy. A booming scientific

field – data privacy – whose goal is to provide methodologies, models and

techniques to release useful information while preserving individuals’

privacy, has attracted significant interest in both academia and industry.

A basic setting of studying data privacy is the following: Let S =

{z1, . . . , zm} be a dataset where each zi is collected from an individual and f

be a function one wants to compute. The goal of data privacy is to design a

mechanismM that computes f (S) “accurately,” while “protecting privacy”

of the participants. A natural and important question now is: What do we
mean by “protecting privacy?”

One of the most important achievements in answering this question

in the past decade is the notion of differential privacy, proposed in the

seminal work of Dwork, McSherry, Nissim and Smith Dwork et al. (2006).

Differential privacy is a definition: It defines a certain desirable property that

M (i.e. the mechanism) should satisfy –M is differentially private if for

any individual zi , M(S) andM(S \ {zi}) “look the same.” That is, from

each individual’s point of view, his own data will not affect the behavior

ofM.1 Intuitively, this suggests that individual i is “anonymized” and
1Clearly, “absolute equality” betweenM(S) andM(S \ {zi}) forcesM to be a constant

2

his privacy is protected. Since its first appearance, a large body of theory

on differential privacy has been developed (see the monograph of Dwork

and Roth Dwork and Roth (2014)) and differential privacy has become

the gold standard for protecting data privacy.

At the heart of differential privacy there lies an idea of “stability” –

the behavior ofM is stable with respect to any single individual’s par-

ticipation. A concrete way to conceive this stability is to think about a

“constant” mechanism: That is, no matter what S is,M “stably” outputs

some constant C. While such anM is uninteresting in view of computing

f – it however achieves perfect differential privacy: It is so stable that no

individual can ever affect its behavior.

The above example also illustrates a fundamental tradeoff, the privacy-
utility tradeoff studied in differential privacy. That is, one needs to balance

between designing a stableM with respect to any individual’s partici-

pation, and makingM compute f accurately. In fact, a common way to

achieve differential privacy is to start with f (S), and then inject random

noise to get the desired degree of stability. The privacy-utility tradeoff is

thus, more precisely, the stability-accuracy tradeoff. Therefore, in a strong

sense, differential privacy is nothing but a stability notion.

Differential privacy is only one way to explore the idea of stability in

data privacy. Taking the perspective of stability, in this thesis we study

data privacy both within the realm of differential privacy and beyond.

We make contributions in three directions: (i) Advancing the theory and
practice of differentially private optimization, (ii) Identifying misapplications
of differential privacy, and (iii) Exploring privacy concerns beyond the scope
of differential privacy. Importantly, for all these three directions it turns

out that some appropriate form of stability is the key to our development.

function, therefore in reality only some form of “approximately the same” is required.

3

1.1 Contributions

Advancing the theory and practice of differentially private optimiza-
tion. The past decade has seen significant interest in integrating machine

learning techniques into RDBMS systems (for example, MADlib Heller-

stein et al. (2012), Bismarck Feng et al. (2012)) for large-scale enterprise

applications. A fundamental optimization algorithm that powers various

machine learning techniques in an RDBMS is stochastic gradient descent
(SGD). SGD is attractive as it is simple to implement, easily paralleliz-

able Zinkevich et al. (2010) and is known to have strong robustness

properties.

It is thus desirable to have effective SGD algorithms with strong dif-

ferential privacy guarantee. Unfortunately, while differentially private

SGD have been studied in theory (SCS13 Song et al. (2013), BST14 Bassily

et al. (2014)), each of the solutions has characteristics that render them

unattractive for implementation in an RDBMS.

In the first part of this thesis we improve the state of the art SGD

algorithms for in-RDBMS machine learning. We show, perhaps somewhat

surprisingly, that the output perturbation method, one of the most basic

paradigms for achieving differential privacy, can be applied to achieve

private SGD with small noise. Specifically, we propose running SGD for a

constant number of passes and then adding noise to the resulting output.

Key to our improvement is a careful and improved analysis of the L2-sensitivity,
which is a stability measure, of SGD. Using well-known expansion proper-

ties of gradient operators, which date back to Polyak Polyak (1987), we

prove that SGD is indeed very stable under the L2-sensitivity measure.

To validate our approach, we provide a comprehensive empirical study

comparing our method with SCS13 and BST14. First, we demonstrate

practically that our algorithms can be integrated more easily with lit-

tle effort and also run faster than the others. Second, using standard

benchmark datasets of different scales, we analyze the effects of different

4

parameters for running private SGD, and demonstrate that our method

yields substantially better test accuracy than SCS13 or BST14 for the

same number of passes over the data. We present details of this work in

Chapter 3.

Identifying areas where misapplications of differential privacy lead
to claims that differential privacy is flawed. Differential privacy is ul-

timately a mathematical construct, and how it maps to the real world

requires care and interpretation. Indeed, over the past decade, there have

been several works that have tried to identify flaws in some intuitive (and

popular) claims about differential privacy. For example, in Kifer and

Machanavajjhala (2011), the authors argued that it is false to claim that

“differential privacy’s guarantee is independent of the adversary’s prior knowl-
edge”, and that one must actually impose assumptions on the adversary’s

prior. This work has spawned a line of research Kifer and Machanava-

jjhala (2014); Li et al. (2013) that tries to identify the relative power of

different priors.

Interestingly, however, it can be shown that the examples Kifer and

Machanavajjhala (2011) used to correct the “misconception” about differ-

ential privacy are indeed themselves “misinterpretations.” This point in-

deed has been clarified by some recent theoretical work Kasiviswanathan

and Smith (2008) which gives a Bayesian interpretation of differential

privacy: The guarantee of differential privacy is “posterior-to-posterior”

in some properly defined two-world game, while the examples used to

challenge differential privacy in Kifer and Machanavajjhala (2011) are

“prior-to-posterior” privacy attacks. In fact, Kasiviswanathan and Smith

(2008) proved that the posterior-to-posterior guarantee of differential

privacy holds independent of the prior.
Such misinterpretations are not isolated. We observe that people (even

accomplished privacy researchers) sometimes attempt to use differential

privacy to counter privacy breaches that differential privacy was never

5

designed to prevent. An interesting example to this end is model inversion
attacks (MI attacks), proposed in Fredrikson et al. (2014), which have

received attention shortly after their discovery Fredrikson et al. (2015);

Wang et al. (2015). Let us briefly describe MI attacks. As a simple exam-

ple, consider a machine learning model that takes features x1, . . . ,xd and

produces a prediction value y. An MI attack takes input x1, . . . ,xd−1 and a

value y′ that is related to y, and tries to predict xd (hence “inverting the

model”). For example, in Fredrikson et al. (2014), the authors consider

the case where xd is some genetic marker, y is the warfarin dosage and

x1, . . . ,xd−1 are some general background information (height, weight, etc.).

They used an MI attack to predict an individual’s genetic markers based

on his or her warfarin dosage, thus breaking individual privacy.

In the work of Fredrikson et al. (2014), the authors applied differential

privacy to prevent MI attacks. Specifically, they used the functional mecha-
nism of Zhang et al. (2012) to build differentially private machine learning

models and evaluated their resistance to MI attacks. Unfortunately, they

found that (i) For reasonable differential privacy guarantee the accuracy

of models produced by the functional mechanism is too low to be usable,

and (ii) For models with enough noise (injected however for the purpose

of differential privacy) to resist MI attacks, the accuracy is again too low

to be usable.

In the second part of the thesis we address both of these issues. Our

approach is to examine stability of the empirical risk minimization (recall

that in part one, we examined stability of a particular algorithm, namely

SGD). Our results are both positive and negative:

• For (i), we demonstrate that a substantially better privacy-utility

tradeoff can be achieved compared to the functional mechanism.

Specifically, we give a new analysis of the L2-sensitivity of the empiri-
cal risk minimization. Our analysis relaxes the technical conditions

required by previous work Chaudhuri et al. (2011). Moreover, it

6

reveals that output perturbation can be used to obtain a much better

privacy-utility tradeoff than the functional mechanism. Under the

same technical conditions, we achieve the same tradeoff between dif-

ferential privacy and generalization risk as that recently proved by

Bassily et al. Bassily et al. (2014), while avoiding use of the exponen-

tial mechanism McSherry and Talwar (2007) and the sophisticated

sampling sub-procedure used by Bassily et al. Bassily et al. (2014).

This makes our approach widely-applicable in practical settings.

• For (ii), however, we demonstrate that MI attacks and differential

privacy are indeed orthogonal. To see this abstractly, it suffices

to do a simple thought experiment regarding stability: Consider a

case where somehow we obtain a perfect model without referencing

any training data set. (Perhaps “nature” presents us with such a

model, that is, by analysis from first principles we can construct the

model.) Using this model achieves perfect differential privacy, as

it is constant independent of any training data set. However, this

perfect differential privacy clearly says nothing about susceptibility

to MI attacks. Applying this thought experiment in a more realistic

setting, we see that as long as the model our learning algorithm

converges to is invertible, improving the privacy-utility tradeoff
can only increase the susceptibility of the model to MI attacks. We

formalize this intuition and quantify to what degree this holds in

practice.

We present details of this work in Chapter 4.

Exploring privacy concerns beyond the scope of differential privacy.
Our results in the previous part demonstrate that differential privacy is

not designed to protect MI attacks. Simply put, what differential privacy

protects is the stability of computing a model, while MI attacks are about

models themselves.

7

However, the fact that MI attacks are outside of the cocoon of differen-

tial privacy does not mean that they should not be considered as privacy

concerns. In particular, we note that MI attacks have received attention

shortly after their discovery Fredrikson et al. (2015); Wang et al. (2015).

Perhaps more importantly, in our interviews with medical doctors, they

also raised MI attacks as serious privacy concerns. Therefore, it is a sensi-

ble question to ask: What properties of a model characterize the invertibility
of a model under MI attacks?

With this question, in the last part of this thesis we take a first step to

explore the theoretical foundation of the MI attacks. The main result of

our study reveals that a different form of stability plays a key role in model
invertibility. More precisely, it is the influence of a feature that affects the

invertibility under MI attacks. That is, while differential privacy studies

the stability of the procedure producing the model, influence is about the
stability of the model output when varying a feature.

Using techniques from the theory of Boolean analysis, we character-

ize the model invertibility using influence (of a variable) in the situation

where the adversary has precise knowledge (except for the target feature)

of a victim. For the situation where the background knowledge of an

adversary is noisy, we show that stable influence is an important indicator

of invertibility. We also study the phenomenon of invertibility interfer-
ence, where “unstable features” interfere with each other and render the

model “stable” when small noise present. We give details of this work in

Chapter 5.

1.2 Related Work

Differential privacy was proposed in the seminal work of Dwork, McSh-

erry, Nissim and Smith Dwork et al. (2006) and has become the de-facto

standard for data privacy. Since its introduction, there has been a large

8

body of theory developed; we refer readers to Dwork and Roth (2014) for

an in-depth survey.

A topic that is not quite covered in Dwork and Roth (2014), but has

received significant attention is differentially private convex optimization.

There are three main styles of algorithms – output perturbation Bassily

et al. (2014); Chaudhuri et al. (2011); Jain et al. (2012); Rubinstein et al.

(2009), objective perturbation Chaudhuri et al. (2011); Kifer et al. (2012)

and online algorithms Bassily et al. (2014); Duchi et al. (2013); Jain et al.

(2012); Song et al. (2013). Output perturbation works by finding the exact

convex minimizer and then adding noise to it, while objective perturbation

exactly solves a randomly perturbed optimization problem. Unfortunately,

the privacy guarantees provided by both styles often assume that the exact

convex minimizer can be found, which usually does not hold in practice.

There are also a number of online approaches. Jain et al. (2012) pro-

vides an online algorithm for strongly convex optimization based on a

proximal algorithm (see for example Parikh and Boyd Parikh and Boyd

(2014)), which is more difficult to implement than SGD. They also provide

an offline version (Algorithm 6) for the strongly convex case that is similar

to our approach. Finally, SGD-style algorithms were provided by Bassily

et al. (2014); Duchi et al. (2013); Jain et al. (2012); Song et al. (2013).

On the other hand, the application of these private convex optimiza-

tion algorithms in practice seems slow-paced. One work in this direction

is the functional mechanism by Zhang et al. Zhang et al. (2012), where

their experiments show promising test accuracy on several benchmark

datasets. We note that several work Aono et al. (2015); Wang et al. (2015);

Winslett et al. (2012) have also adopted the functional mechanism as a

basic building block in their studies.

The recent work by Fredrikson et al. Fredrikson et al. (2014) highlights

the unfortunate low model accuracy even for weak differential privacy

guarantees when using the functional mechanism to train differentially

9

private pharmacogenetic models. In the same paper, Fredrikson et al.

also introduced the model inversion attacks. Shortly after their discov-

ery, more instances of effective MI attacks have been discovered, further

stimulating interest in this class of attack. For example, Fredrikson et al.

(2015) considered a white-box MI attack on models used to classify im-

ages. They demonstrated that by exploiting the additional confidence

information provided by such models, one can significantly improve both

the effectiveness and efficiency of an MI attack. Interestingly, we note that

these attacks are reminiscent of privacy attacks discussed in the context

of inverting highly compressed image features, which were explored pre-

viously Daneshi and Guo (2011); d’Angelo et al. (2012); Kato and Harada

(2014).

10

2 preliminaries

In this chapter we review preliminary knowledge for our technical devel-

opment later. Specifically we collect definitions and useful technical tools

that will be used throughout this thesis.

2.1 Machine Learning

Let X be a feature space, Y be an output space, and Z = X ×Y be a sample

space. For example, Y is a set of labels for classification, or an interval in

R for regression. Let W ⊆ R
d be a hypothesis space equipped with the

standard inner product and 2-norm ‖ · ‖.1 We are given a loss function

` : W×Z 7→ R which measures the how well a w classifies an example

z ∈ Z, so that given a hypothesis w ∈W and a sample z ∈ Z, we have a loss

`(w,z). We list the following definitions.

Definition 2.1 (Empirical Risk). Let S = {z1, . . . , zm} be a training set, the
empirical risk over the training set S is defined to be

LS(w) =
1
m

m∑
i=1

`(w,zi).

For fixed S, we can think of `i(w) = `(w,zi) as a function of w. The

problem of minimizing LS is called empirical risk minimization (ERM).

Definition 2.2 (Generalization Risk). Let D be a distribution over Z, the
generalization risk is defined to be

LD(w) = E

z∼D
[`(w,z)].

1Using standard results in machine learning, our results easily extend to the
case when w lies in a Hilbert Space.

11

The minimum generalization error achievable over W is denoted as L∗D =

minw∈W LD(w).

In machine learning, D is unknown but we are given a training set

S = {z1, . . . , zn} drawn i.i.d. from D. We are ready to define learnability.

Our definition follows Shalev-Shwartz et al. Shalev-Shwartz et al. (2010)

which defines learnability in the Generalized Learning Setting considered

by Haussler Haussler (1992). This definition also directly generalizes PAC

learnability Valiant (1984).

Definition 2.3 (Learnability). A problem is called agnostically learnable

with rate ε(n,δ) : N×(0,1) 7→ (0,1) if there is a learning rule A : Zn 7→ H
such that for any distribution D over Z, given n ∈ N and δ ∈ (0,1), with
probability 1− δ over S ∼ Dn, LD(A(S)) ≤ L∗D + ε(n,δ). Moreover, we say that
the problem is agnostically learnable if for any δ ∈ (0,1), ε(n,δ) vanishes to
0 as n tends to infinity.

We stress that in this definition, the guarantee of generalization risk

holds simultaneously for every distribution D on the data. Intuitively, this

definition says that given a confidence parameter δ and a sample size n,

the learned hypothesis A(S) is ε(n,δ) close to the best achievable. Note

that ε(n,δ) measures the rate we converge to the optimal.

In the above, the learning rule A is deterministic in the sense that

it maps a training set deterministically to a hypothesis in H. We will

also talk about randomized learning rules, which maps a training set

to a distribution over H. More formally, a randomized learning rule Ã

takes the form Zn 7→ D(H), where D(H) is the set of probability distribu-

tions over H. The empirical risk of Ã on a training item z is defined as

`(Ã(S), z) = Ew∼Ã(S)[`(w,z)]. The empirical risk of Ã on a training set S is

defined as LS(Ã(S)) = Ew∼Ã(S)[LS(w)]. Finally, we define the generalization

error of Ã as LD(Ã(S)) = Ew∼Ã(S)[LD(w)]. In short, we take expectation

over the randomness of Ã.

12

Stability Theory in Machine Learning

Stability theory is a sub-theory in machine learning (see, for example,

Chapter 13 of Shalev-Shwartz and Ben-David (2014) for a gentle survey of

this area). As we will see, the more stable a learning rule is, the better DP-

utility tradeoff we can achieve in a private learning. To discuss stability,

we need to define “change of input data set.” We will use the following

definition.

Definition 2.4 (Replace-One Operation). For a training set S, i ∈ [n] and
z′ ∈ Z, we define S(i,z′) to be the training set obtained by replacing zi by z′. In
other words,

S = {z1, . . . , zi−1, zi , zi+1, . . . , zn},

S(i,z′) = {z1, . . . , zi−1, z
′, zi+1, . . . , zn}.

Moreover, we write S(i) instead of S(i,z′) if z′ is clear from the context.

Informally, a learning rule A is stable if A(S) and A(S(i)) are “close”

to each other. There are many possible ways to formulate what does it

mean by “close.” We will discuss the following definition, which is the

strongest stability notion defined by Shalev-Shwartz et al. Shalev-Shwartz

et al. (2010).

Definition 2.5 (Strongly-Uniform-RO Stability Shalev-Shwartz et al. (2010)).
A (possibly randomized) learning rule A is strongly-uniform-RO stable with
rate εstable(n), if for all training sets S of size n, for all i ∈ [n], and all z′, ẑ ∈ Z,
it holds that |`(A(S(i)), ẑ)− `(A(S), ẑ)| ≤ εstable(n).

Intuitively, this definition captures the following property of a good

learning algorithm A: if one changes any one training item in the training

set S to get S ′, the two hypotheses computed by A from S and S ′, namely

A(S) and A(S ′), will be “close” to each other (here “close” means that for

any instance ẑ sampled from D, the loss of A(S) and A(S ′) on ẑ are close).

13

A fundamental result on learnability and stability, proved recently by

Shalev-Shwartz et al. Shalev-Shwartz et al. (2010), states the following,

Theorem 2.6 (Shalev-Shwartz et al. (2010), informal). Consider any learn-
ing problem in the generalized learning setting as proposed by Vapnik Vapnik
(1998). If the problem is learnable, then it can be learned by a (randomized)
rule that is strongly-uniform-RO stable.

Qualitatively, this theorem says that learnability and stability are equiv-
alent. That is, every problem that is learnable can be learned stably (under

strongly-uniform-RO stability). In the context of differential privacy, this

indicates that for any learnable problem one might hope to achieve a good

DP-utility tradeoff. However, quantitatively the situation is much more

delicate: as we will see later, strongly-uniform-RO stability is somewhat

too weak to lead to a differential privacy guarantee without additional

assumptions.

2.2 Optimization

Convexity

We list the following definitions:

Definition 2.7. Let f :W 7→R be a function:

• f is L-Lipschitz if for any u,v ∈W ,

‖f (u)− f (v)‖ ≤ L‖u − v‖.

• f is convex if for any u,v ∈W ,

f (u) ≥ f (v) + 〈∇f (v),u − v〉.

14

• f is γ-strongly convex if

f (u) ≥ f (v) + 〈∇f (v),u − v〉+
γ

2
‖u − v‖2.

• f is β-smooth if

‖∇f (u)−∇f (v)‖ ≤ β‖u − v‖.

Stochastic Gradient Descent

Stochastic gradient descent (SGD) is one of the most basic algorithms in

optimization. In a nutshell, SGD performs a series of gradient updates:

given time t, iterate wt, and an individual data point (xt, yt), the update

rule is as follows:

wt+1 = G`t ,ηt (wt) = wt − ηt`′t(wt) (2.1)

where `t(·) = `(·; (xt, yt)) is the loss function and ηt ∈ R is a parameter

called the learning rate, or step size. We will denote G`t ,ηt as Gt. A form

of SGD that is commonly used in practice is permutation-based SGD

(PSGD): first sample a random permutation τ of [m] (m is the size of

the training set S), and then repeatedly apply (2.1) by cycling through

S according to τ . In particular, if we cycle through the dataset k times,

we say that it is a k-pass PSGD. We will need two important properties

of SGD, expansiveness and boundedness, which are described in Nesterov

(2004); Polyak (1987).

Definition 2.8 (Expansiveness). Let G :W 7→W be an operator that maps a
hypothesis to another hypothesis. G is said to be ρ-expansive if

sup
w,w′

‖G(w)−G(w′)‖
‖w −w′‖

≤ ρ.

15

Definition 2.9 (Boundedness). Let G :W 7→W be an operator that maps a
hypothesis to another hypothesis. G is said to be σ -bounded if supw∈W ‖G(w)−
w‖ ≤ σ.

Lemma 2.10 (Expansiveness (Nesterov (2004); Polyak (1987))). Assume
that ` is β-smooth. Then, the following hold.

1. If ` is convex, then for any η ≤ 2/β, G`,η is 1-expansive.

2. If ` is γ-strongly convex, then for η ≤ 2
β+γ , G`,η is (1− 2ηβγ

β+γ)-expansive.

In particular we use the following simplification due to Hardt et al.

(2015).

Lemma 2.11 (Hardt et al. (2015)). Suppose that ` is β-smooth and γ-strongly
convex. If η ≤ 1

β , then G`,η is (1− ηγ)-expansive.

Lemma 2.12 (Boundedness). Assume that ` is L-Lipschitz. Then the gradient
update G`,η is (ηL)-bounded.

We are ready to describe a key quantity studied in this paper.

Definition 2.13 (δt). Let w0,w1, . . . ,wT , and w′0,w
′
1, . . . ,w

′
T be two sequences

inW . We define δt as ‖wt −w′t‖.

The following lemma bounds δt using expansiveness and boundedness

properties (Lemma 2.10 and 2.12).

Lemma 2.14 (Growth Recursion Hardt et al. (2015)). Fix any two sequences
of updates G1, . . . ,GT and G′1, . . . ,G

′
T . Let w0 = w′0 and wt = Gt(wt−1) and

16

w′t = G′t(w
′
t−1) for t = 1,2, . . . ,T . Then

δ0 = 0, and for 0 < t ≤ T

δt ≤



ρδt−1 Gt = G′t is ρ-expansive.

min(ρ,1)δt−1 + 2σt
Gt and G′t are σt-bounded,

Gt is ρ-expansive.

2.3 Differential Privacy

We need some basic background from the theory of differential privacy.

We say that two datasets S,S ′ are neighboring, denoted as S ∼ S ′, if they

differ on a single individual’s private value. Recall the following defini-

tion:

Definition 2.15 ((ε,δ)-differential privacy). A (randomized) algorithm A is
said to be ε-differentially private if for any neighboring datasets S,S ′, and
any event E ⊆ Range(A), Pr[A(S) ∈ E] ≤ eεPr[A(S ′) ∈ E] + δ.

In particular, if δ = 0, we will use ε-differential privacy instead of (ε,0)-

differential privacy. A basic paradigm to achieve ε-differential privacy is

to examine its L2-sensitivity,

Definition 2.16 (L2-sensitivity). Let f be a deterministic query that maps
a dataset to a vector in R

d . The L2-sensitivity of f is defined to be ∆2(f) =

maxS∼S ′ ‖f (S)− f (S ′)‖.

The following theorem gives the “output perturbation” method for

ensuring differential privacy. Essentially it relates ε-differential privacy

with L2-sensitivity.

17

Theorem 2.17 (Dwork et al. (2006)). Let f be a deterministic query that
maps a database to a vector in R

d . Then publishing f (D) + κ where κ is
sampled from the distribution with density

p(κ) ∝ exp
(
− ε‖κ‖
∆2(f)

)
(2.2)

ensures ε-differential privacy.

Importantly, the L2-norm of the noise vector, ‖κ‖, is distributed ac-

cording to the Gamma distribution Γ
(
d, ∆2(q)

ε

)
. We have the following fact

about Gamma distributions:

Theorem 2.18 (Chaudhuri et al. (2011)). For the noise vector κ, we have
that with probability at least 1−γ , ‖κ‖ ≤ d ln(d/γ)∆2(q)

ε .

Finally, by changing the noise to Gaussian noise, one obtains (ε,δ)-

differential privacy.

Theorem 2.19 (Dwork and Roth (2014)). Let f be a deterministic query
that maps a database to a vector in R

d . Let ε ∈ (0,1) be arbitrary. For
c2 > 2ln(1.25/δ), adding Gaussian noise sampled according to

N (0,σ2); σ ≥ c∆
ε
, c2 > 2ln

(1.25
δ

)
(2.3)

ensures (ε,δ)-differentially privacy.

2.4 Boolean Analysis

We need some elementary concepts from Boolean analysis. More details

regarding these concepts can be found in O’Donnell O’Donnell (2014). In

Boolean analysis, a Boolean function f : {-1,1}n 7→ {-1,1} is viewed as a 2n-

dimensional real vector, and we consider an inner product space of these

18

vectors, where the inner product is defined as 〈f ,g〉 = Ex∼{-1,1}n[f (x)g(x)].

A central concept of Boolean analysis is its Fourier expansion, where

the Fourier basis is the set of all parity functions Ω = {χS : S ⊆ [n]}
where χS(x) =

∏
i∈S xi is the parity function of bits in S. Any function f

can be represented as f =
∑
S⊆[n] f̂ (S)χS where f̂ (S) is called the Fourier

coefficient of f at S.

Definition 2.20 (Influence). Let f : {-1,1}n 7→ {-1,1} and i ∈ [n]. The influ-
ence of i-th coordinate of f is Infi(f) = Prx∼{-1,1}n[f (x) , f (x⊕i)] where x⊕i

means to flip the i-th bit of x.

Influence is related to the difference operator Di .

Definition 2.21. Di is a linear operator applied to a Boolean function such
that (Di f)(x) = f (xi→1)−f (xi→−1)

2 . Here xi→1 means we set the i-th bit of x to 1.

Definition 2.22. Let b ∈ {-1,1} and −1 ≤ ρ ≤ 1. A random bit b′ is ρ-
correlated with b if

b′ =

b w.p. 1
2 + ρ

2

−b w.p. 1
2 −

ρ
2

We write it as b′ ∼Nρ(b). As ρ tends to 1, b′ is more likely to be b.

We say that z and x are ρ-correlated if each zi is drawn independently

from Nρ(xi), for i ∈ [n]. In such a case, we write it as z ∼Nρ(x).

Definition 2.23 (Noise Stability). Let −1 ≤ ρ ≤ 1. The ρ-noise stability of f ,
denoted as Stabρ[f], is defined to be Stabρ[f] = Ex∼{-1,1}n

y∼Nρ(x)
[f (x)f (y)] .

Definition 2.24 (Stable Influence). Let 0 ≤ ρ ≤ 1. The ρ-stable influence
of f at i, denoted as Inf(ρ)

i [f], is defined to be Inf(ρ)
i [f] = Stabρ[Di f] =

Ex∼{-1,1}n
y∼Nρ(x)

[Di f (x)Di f (y)] . Note that when ρ = 1, this reduces to Infi[f].

19

Definition 2.25 (Noise Operator). Let −1 ≤ ρ ≤ 1. The noise operator Tρ is
defined as Tρ f (x) = Ey∼Nρ(x)[f (y)].

The following lemma gives some elementary properties of the noise

operator and stable influence.

Lemma 2.26 (O’DonnellO’Donnell (2014)). We have the following

• Tρ is a linear operator.

• Tρ f =
∑
S⊆[n]ρ

|S |f̂ (S)χS .

• Stabρ[f] = 〈f ,Tρ f 〉 =
∑
S⊆[n]ρ

|S |f̂ (S)2.

Model Inversion and Boolean Analysis

Because our functions are models learned from collected data, we will

make the following assumption on the models:

Definition 2.27 (No Trivial Feature Assumption). Let f : {-1,1}n 7→R be a
model learned from data. The no trivial feature assumption states that every
feature has nontrivial influence. That is, for any i ∈ [n], Infi[f] > 0.

The following simple proposition shows that if Infi[f] = 0, then one

can obtain an “equivalent” function over the Boolean cube without xi .

Lemma 2.28. Consider any f : {-1,1}n 7→ {-1,1}. Suppose that Infi[f] = 0,
then there exists another function g which maps x1, . . . ,xi−1,xi+1, . . . ,xn to
{-1,1}, such that Infj[g] = Infj[f] for any j , i.

Proof. Because Infi[f] =
∑
S:i∈S f̂ (S)2, so if Infi[f] = 0, this means f̂ (S) = 0

for any i ∈ S. In particular, we can set now g to be the following function:

g(x1, . . . ,xi−1,xi+1, . . . ,xn) =
∑
S=i

f̂ (S)xS .

f (x) = g(x−i) and Infj[g] = Infj[f] for any j ∈ [n], j , i.

20

3 differentially private stochastic gradient

descent for in-rdbms analytics

“Truth is ever to be found in the simplicity, and not in the multi-
plicity and confusion of things.”

— Issac Newton

Stochastic gradient descent (SGD) is one of the most basic, as well as

popular, algorithms in optimization. SGD is widely applied in practice to

power optimization tasks, such as those arise in machine learning tasks,

in various domains.

In this chapter we consider differentially private SGD. State-of-the-art

private algorithms, SCS13 Song et al. (2013), BST14 Bassily et al. (2014)

adopt a paradigm that injects noise at every iteration of SGD. SCS13

requires a significant amount of noise at each iteration, resulting in a noisy

solution. While BST14 reduces the noise per iteration, their analysis is

subtle and complicated, and can only guarantee (ε,δ)-differential privacy

(due to the use of advanced composition for (ε,δ)-differential privacy).

From a practitioner’s point of view, the fact that they require modifying

gradient update steps of a non-private SGD algorithms and inject noise for

each step makes it more difficult to integrate them into existing systems.

Our main results are better differentially private SGD algorithms. Our

algorithms are simpler to implement, give better test accuracy and the

analysis is simple and modular. Specifically, we propose running SGD for

a constant number of passes and then adding noise to the resulting output.

Somewhat surprisingly, we show that this simple paradigm works pretty

well for SGD. Key to our improvement is a careful and improved analysis
of the L2-sensitivity of SGD, which leverages the well-known expansion
properties of gradient operators Nesterov (2004); Polyak (1987).

21

3.1 Introduction

The past decade has seen significant interest in integrating complex data

analytics into RDBMS systems (for example, MADlib Hellerstein et al.

(2012), Bismarck Feng et al. (2012)) for large-scale enterprise applica-

tions. A core type of data analytics supported by these systems is machine
learning, which is widely used to extract valuable patterns from data in

domains such as personalized medicine, finance, web search histories and

social networks. For these domains, there has also been an ever grow-

ing concern about individuals’ privacy. To this end, differential privacy,

a cryptographically motivated privacy notion, has emerged as the gold

standard for protecting data privacy. Differentially private learning has

been intensively studied in recent years by researchers from the database,

machine learning and theoretical computer science communities Bass-

ily et al. (2014); Chaudhuri et al. (2011); Duchi et al. (2013); Jain and

Thakurta (2013); Kifer et al. (2012); Zhang et al. (2013, 2012).

Interestingly, while in-RDBMS machine learning and differentially

private learning have been separately studied, to the best of our knowl-

edge little previous work has examined private learning in an RDBMS

system. We observe that an ideal solution would satisfy three properties:

(1) High accuracy. The algorithm must learn private models of accuracy

competitive with the non-private models. (2) Low overhead. Ideally, the

private learning algorithm should only incur a small runtime overhead

compared to non-private algorithms. (3) Ease of integration. The private

algorithm must fit naturally into an RDBMS code base and should not

require a significant modification to the RDBMS.

This work considers a specific algorithm – stochastic gradient descent
(SGD) for differentially private machine learning in an in-RDBMS system.

There are two main reasons to specifically consider SGD. First, it is a

fundamental machine learning algorithm that lies at the heart of many

in-RDBMS data analytics systems, as it is simple to implement, easily par-

22

allelizable Zinkevich et al. (2010) and is known to have strong robustness

properties. For example, a key feature of Bismarck Feng et al. (2012) is a

single framework to implement all convex analysis techniques available

in RDBMSes based on a highly efficient implementation of SGD using

User Defined Aggregates (UDA), a widely-available RDBMS abstraction.

As a result, integrating a private version of SGD is relatively simple, and

it automatically provides private in-RDBMS versions of all these convex

analysis techniques.

The second reason to consider SGD has to do with a core problem for

both in-RDBMS learning and private learning: empirical risk minimization.

A long line of work, that includes the algorithms in Chaudhuri et al.

(2011); Kifer et al. (2012); Rubinstein et al. (2009), and a subset of algo-

rithms in Bassily et al. (2014); Jain et al. (2012); Jain and Thakurta (2013),

has studied how to privately solve this problem assuming that the exact
empirical risk minimizer can be computed. However, as also observed

by Jain, Kothari and Thakurta Jain et al. (2012), this assumption often

does not hold in reality, and it is not clear if the privacy guarantees based

on it still hold if only approximate solutions can be computed. By di-

rectly using private SGD, we do not have to rely on the “exact minimizer”

assumption any more, and can provide a more general and practical

solution.

While previous work has considered differentially private versions of

SGD, each of the solutions has characteristics that render them unattrac-

tive for implementation in an RDBMS. Song, Chaudhuri and Sarwate Song

et al. (2013) adds a large amount of noise at each iteration of SGD to make

it differentially private; this results in a noisy solution, which is partially

mitigated in practice by mini-batching. Bassily, Smith and Thakurta Bass-

ily et al. (2014) provides a second solution following the same paradigm,

but with less noise per iteration. This is achieved by first, using a novel

subsampling technique and second, relaxing the privacy guarantee to

23

(ε,δ)-differential privacy for δ > 0. This relaxation is necessary as they

need to use advanced composition results for (ε,δ)-differential privacy.

Therefore, both of these solutions require modifying gradient update

steps of a non-private SGD algorithm and inject noise for each step. This

makes it more difficult to integrate them with an in-RDBMS analytics

system. In fact, when we integrated them with Bismarck, it required a

somewhat deep modification of the existing code base.

Main Contributions. We make the following contributions in improving

private SGD for better private in-RDBMS machine learning.

• We show, perhaps somewhat surprisingly, that the output perturba-
tion method, one of the most basic paradigms for achieving differ-

ential privacy, can be applied to achieve private SGD with small

noise. Specifically, we propose running SGD for a constant number

of passes and then adding noise to the resulting output. We provide

guarantees on the privacy properties of this approach, which are

based on a careful and improved analysis of the L2-sensitivity of

SGD. Our analysis leverages the well-known expansion properties of

gradient operators Nesterov (2004); Polyak (1987).

• Because output perturbation assumes black-box access to non-private

algorithms, our method thus directly inherits many of the nice prop-

erties of SGD, while allowing easier integration. We integrate our

private SGD algorithms, as well as SCS13 Song et al. (2013) and

BST14 Bassily et al. (2014) into Bismarck Feng et al. (2012), an in-

RDBMS data analytics platform. We demonstrate practically that

our algorithms can be integrated more easily with little effort and

also runs faster than the others.

• We provide a comprehensive empirical study comparing our method

with SCS13 and BST14 . Using standard benchmark datasets of

different scales, we analyze the effects of different parameters for

24

running private SGD, and demonstrate that our method yields sub-

stantially better test accuracy than SCS13 or BST14 for the same

number of passes over the data.

The rest of this chapter is organized as follows: In Section 3.2, we

present our private SGD algorithms and analyze their privacy and con-

vergence guarantees. Along the way, we extend our main algorithms

in various ways to incorporate common practices of SGD. We then pro-

vide a comprehensive empirical study in Section 3.3 to evaluate private

SGD with respect to the three aforementioned properties for in-RDBMS

analytics: High accuracy, lower overhead, and ease of integration.

3.2 Private SGD

In this section we present differentially private PSGD algorithms and

analyze their privacy and convergence guarantees. Specifically, we present

a new analysis of the output perturbation method for PSGD. Our new

analysis shows that very little noise is needed to achieve differential

privacy. In fact, the resulting private algorithms have good convergence

rates with even one pass through the data. Since output perturbation also

uses standard PSGD algorithm as a black-box, this makes our algorithms

attractive for in-RDBMS scenarios.

This section is structured accordingly in two parts. In Section 3.2 we

give two main differentially private algorithms for convex and strongly

convex optimization. In Section 3.2 we first prove that these two algo-

rithms are differentially private (Section 3.2 and 3.2), then extend them

in various ways (Section 3.2), and finally prove their convergence (Sec-

tion 3.2).

25

Algorithms

As we mentioned before, our differentially private PSGD algorithms use

one of the most basic paradigms for achieving differential privacy – the

output perturbation method Dwork et al. (2006) based on L2-sensitivity
(Definition 2.16). Specifically, our algorithms are “instantiations” of

the output perturbation method where the L2-sensitivity parameter ∆2

comes out of our new analysis. To describe the algorithms, we assume

a standard permutation-based SGD procedure (denoted as PSGD) which

can be invoked as a black-box. To facilitate the presentation, Table 3.1

summarizes the parameters and their meaning.

Parameter Meaning

L Lipschitz constant.

γ Strong convexity.

β Smoothness.

ε,δ Privacy parameters.

ηt Learning rate or step size at iteration t.

W Hypothesis space.

`(w,z) w ∈W , z is a single individual’s data.

S Training set.

m |S |, the size of S.

R Radius of the convex set.

Table 3.1: Parameters.

26

Algorithm 1 Private Convex Permutation-based SGD

Require: `(·, z) is convex for every z, η ≤ 2/β.
Input: Data S, parameters k,η,ε

1: function PrivateConvexPSGD(S,k,ε,η)
2: w← PSGD(S) with k passes and ηt = η
3: ∆2← 2kLη
4: Sample noise vector κ according to (2.2).
5: return w+κ

Algorithm 2 Private Strongly Convex Permutation-based SGD

Require: `(·, z) is γ-strongly convex for every z
Input: Data S, parameters k,ε

1: function PrivateStronglyConvexPSGD(S,k,ε)
2: w← PSGD(S) with k passes and ηt = min(1

β ,
1
γt)

3: ∆2← 2L
γm

4: Sample noise vector κ according to (2.2).
5: return w+κ

Algorithms 1 and 2 give our private SGD algorithms for convex and

strongly convex cases, respectively. A key difference between these two

algorithms is at line 3 where different L2-sensitivities are used to sample

the noise κ. Note that different learning rates are used: In the convex case,

a constant rate is used, while a decreasing rate 1
γt is used in the strongly

convex case. Finally, note that the standard PSGD is invoked as a black

box at line 2.

Analysis

In this section we establish privacy and convergence guarantees of Al-

gorithms 1 and 2. Along the way, we also describe extensions to accom-

modate common practices in running stochastic gradient descent. Most

proofs in this section are deferred to the appendix.

27

We start with an overview of the privacy analysis. Let A(r;S) denote a

randomized non-private algorithm where r denotes the randomness (e.g.,

random permutations sampled by SGD) and S denotes the input training

set. On a pair of neighboring datasets S,S ′ (i.e., S,S ′ differ on a single

data point), we want to bound maxr,r ′ ‖A(r;S)−A(r ′;S ′)‖, where r, r ′ can

be different randomness sequences of A in general. This can be complicated

in general since A(r; ·) and A(r ′; ·) may access the data in vastly different

patterns.

Fortunately, we observe that for non-adaptive randomized algorithms,

one can consider randomness sequences one at a time, and it suffices to

bound maxr ‖A(r;S)−A(r;S ′)‖. We have the following definition,

Definition 3.1 (Non-Adaptive Algorithms). A randomized algorithm A is
non-adaptive if its random choices do not depend on the input data values.

PSGD is clearly non-adaptive as a single random permutation is sam-

pled at the very beginning of the algorithm. Another common SGD

variant, where one independently and uniformly samples it ∼ [m] at it-

eration t and picks the it-th data point, is also non-adaptive. In fact,

more modern SGD variants, such as Stochastic Variance Reduced Gradi-

ent (SVRG Johnson and Zhang (2013)) and Stochastic Average Gradient

(SAG Roux et al. (2012)), are non-adaptive as well. Now we have the

following lemma for non-adaptive algorithms and differential privacy.

Lemma 3.2. Let A(r;S) be a non-adaptive randomized algorithm where r
denotes the randomness of the algorithm and S denotes the dataset A works
on. Suppose that

sup
S∼S ′

sup
r
‖A(r;S)−A(r;S ′)‖ ≤ ∆.

Then publishingA(r;S)+κwhere κ is sampled with density p(κ) ∝ exp
(
−ε‖κ‖2

∆

)
ensures ε-differential privacy.

28

Proof. Let Ã denote the private version of A. Ã has two parts of random-

ness: One part is r, which is used to compute A(r;S); the second part is

κ, which is used for perturbation (i.e. A(r;S) + κ). Let R be the random

variable corresponding to the randomness of A. Note that R does not

depend on the input training set. Thus for any event E,

Pr[Ã((r,κ);S) ∈ E]

=
∑
r

Pr[R = r] ·Pr
κ

[A((r,κ);S) ∈ E | R = r]. (3.1)

Denote Prκ[A((r,κ);S) ∈ E | R = r] by pκ(Ar(S) ∈ E). Then similarly for S ′

we have that

Pr[Ã((r,κ);S ′) ∈ E]

=
∑
r

Pr[R = r] · pκ(Ar(S
′) ∈ E). (3.2)

Compare (3.1) and (3.2) term by term (for every r): the lemma then follows

as we calibrate the noise κ so that pκ(Ar(S) ∈ E) ≤ eεpκ(Ar(S ′) ∈ E).

From now on we denote PSGD by A. With Definition 2.13, our goal

is thus to bound supS∼S ′ supr δT . Fortunately, one can now derive a good

upper bound for it using the expansion and boundedness properties:

In fact, because for PSGD in each pass the differing data point is only

encountered once, one can easily accumulate their contributions and

obtains the desired L2-sensitivity bounds.

Remark 3.3. We note that in an independent line of research on formally
proving differential privacy, Barthe et al. Barthe et al. (2016) found a new use-
ful proof principle which is related to “using the same randomness for privacy
noise.” This resembles our analysis here which relies on “same randomness of
SGD.” However, we note a significant difference: the “same randomness” in
Barthe et al.’s work is related to the randomness for privacy, which in our case

29

is about the Laplace noise injected at the end. However, the “same randomness”
used in our analysis refers to the randomness of SGD (not for privacy).

Convex Optimization

In this section we prove privacy guarantee when `(·, z) is convex. Re-

call that for general convex optimization, we have 1-expansiveness by

Lemma 1. We thus have the following lemma that bounds δT .

Lemma 3.4. Consider k-passes PSGD for L-Lipschitz, convex and β-smooth
optimization where ηt ≤ 2

β for t = 1, . . . ,T . Let S,S i be any neighboring
datasets. Let r be a random permutation of [m]. Suppose that r(i) = i∗. Let
T = km, then δT ≤ 2L

∑k−1
j=0 ηi∗+jm .

Proof. Let T = km, so we have in total T updates. Applying Lemma 2.12,

Growth Recursion Lemma (Lemma 2.14), and the fact that the gradient

operators are 1-expansive, we have:

δt ≤


δt−1 + 2Lηt

if t = i∗ + jm,

j = 0, . . . , k − 1

δt−1 otherwise.

(3.3)

Unrolling the recursion completes the proof.

We immediately have the following corollary on L2-sensitivity with

constant step size,

Corollary 3.5 (Constant Step Size). Consider k-passes PSGD for L-Lipschitz,
convex and β-smooth optimization. Suppose further that we have constant
learning rate η1 = η2 = · · · = ηT = η ≤ 2

β . Then supS∼S ′ supr δT ≤ 2kLη.

This directly yields the following theorem,

30

Theorem 3.6. Algorithm 1 is ε-differentially private.

We now give L2-sensitivity results for two different choices of step

sizes, which are also common for convex optimization.

Corollary 3.7 (Decreasing Step Size). Let c ∈ [0,1) be some constant. Con-
sider k-passes PSGD for L-Lipschitz, convex and β-smooth optimization. Sup-
pose further that we take decreasing step size ηt = 2

β(t+mc) where m is the

training set size. Then supS∼S ′ supr δT = 4L
β

(
1
mc + lnk

m

)
.

Proof. We have that

sup
S∼S ′

sup
r
‖A(r;S)−A(r;S ′)‖ ≤ 4L

β

k−1∑
j=0

1
mc + jm+ 1

 .
Therefore

4L
β

k−1∑
j=0

1
mc + jm+ 1

 =
4L
β

 1
mc + 1

+
k−1∑
j=1

1
mc + jm+ 1


≤4L
β

 1
mc

+
1
m

k−1∑
j=1

1
j


≤4L
β

(
1
mc

+
lnk
m

)
as desired.

Corollary 3.8 (Square-Root Step Size). Let c ∈ [0,1) be some constant. Con-
sider k-passes PSGD for L-Lipschitz, convex and β-smooth optimization. Sup-

31

pose further that we take square-root step size ηt = 2
β(
√
t+mc)

. Then

sup
S∼S ′

sup
r
δT ≤

4L
β

k−1∑
j=0

1√
jm+ 1 +mc


=O

Lβ
 1
mc

+ min

 kmc ,
√
k
m

 .
Two remarks are in order: First, in Lemma 3.5 we use “constant” step

size for the SGD. However, one should note that “constant step size”

does not mean “constant noise” in a typical differential privacy sense.

Constant step size for SGD can depend on the size of the training set,

and in particular can vanish to zero as training set size increases. This,

in particular, implies that our private PSGD algorithm is consistent (i.e.,

L2-sensitivity vanishes to 0 as training set size increases). In fact, in

typical convergence results of SGD (see, for example in Bubeck (2015);

Nemirovsky and Yudin (1983)) the constant step size η is set to 1/T O(1)

where T is the total number of iterations. In such cases, T asymptotically

depends on m, the size of the training set. For example, if the step size is

1/
√
T , and we run a single epoch through the data, then the L2-sensitivity

is indeed 2L√
m

, and so the noise vanishes to 0 as m increases.

Second, in SGD we may want to approximately measure the “maximal

progress” one can make, which is how far away one can walk from the

starting point. Formally, this is the sum of all step sizes. We note that,

for this to be large in the case of decreasing and square-root step sizes, c

should not be set to be too large, while making it large is beneficial for

reducing noise. Indeed, since our initial step size is O(1/mc), and the final

step size is O(1/km), the sum is roughly
∫ km
mc

1
xdx =O((1− c) lnm).

32

Strongly Convex Optimization

Now we consider the case where `(·, z) is γ-strongly convex. In this case

the sensitivity is smaller because the gradient operators are ρ-expansive

for ρ < 1 so in particular they become contractions. We have the following

lemmas.

Lemma 3.9 (Constant Step Size). Consider PSGD for L-Lipschitz, γ-strongly
convex and β-smooth optimization with constant step sizes η ≤ 1

β . Let k be the
number of passes. Let S,S ′ be two neighboring datasets differing at the i-th
data point. Let r be a random permutation of [m]. Suppose that r(i) = i∗. Let
T = km, then δT ≤ 2Lη

∑k−1
j=0(1− ηγ)(k−j)m−i∗ . In particular,

sup
S∼S ′

sup
r
δT ≤

2ηL
1− (1− ηγ)m

.

Proof. Let T = km, so we have in total T updates. We have the following

recursion

δt ≤


(1− ηγ)δt−1 + 2ηL

if t = i∗ + jm,

j = 0,1, . . . , k − 1

(1− ηγ)δt−1 otherwise.

(3.4)

This is because at each pass different gradient update operators are en-

countered only at position i∗ (corresponding to the time step t = i∗ + jm),

and so the two inequalities directly follow from the growth recursion

lemma (Lemma 2.14). Therefore, the contribution of the differing en-

try in the first pass contributes 2ηL(1 − ηγ)T−i
∗
, and generalizing this,

the differing entry in the (j + 1)-th pass (j = 0,1, . . . , k − 1) contributes

2ηL(1− ηγ)T−i
∗−jm. Summing up gives the first claimed bound.

For sensitivity, we note that for j = 1,2, . . . , k, the j-th pass can only

33

contribute at most 2ηL ·(1−ηγ)(k−j)m to δT . Summing up gives the desired

result.

Lemma 3.10 (Decreasing Step Size). Consider k-passes PSGD for L-Lipschitz,
γ-strongly convex and β-smooth optimization. Suppose further that we use
decreasing step length: ηt = min(1

γt ,
1
β). Let S,S ′ be two neighboring datasets

differing at the i-th data point. Let r be a random permutation of [m]. Suppose
that r(i) = i∗. Let T = km, then supS∼S ′ supr δT ≤

2L
γm .

Proof. From the Growth Recursion Lemma (Lemma 2.14) we know that

in the γ-strongly convex case, with appropriate step size, in each iteration

either we have a contraction of δt−1, or, we have a contraction of δt−1 plus

an additional additive term. In PSGD, in each pass the differing data

point will only be encountered once, introducing an additive term, and is

contracted afterwards.

Formally, let T be the number of updates, the differing data point

is at location i∗. Let ρt < 1 be the expansion factor at iteration t. Then

the first pass contributes δ∗1
∏T
t=i∗+1ρt to δT , the second pass contributes

δ∗2
∏T
t=i∗+m+1ρt to δT . In general pass j contributes δ∗j

∏T
t=i∗+(j−1)m+1ρt to

δT .

Let ιj = δ∗j
∏T
t=i∗+(j−1)m+1ρt be the contribution of pass j to δT . We now

figure out δ∗j and ρt. Consider ι1, we consider two cases. If i∗ ≥ β
γ , then

ηt ≤ 1
γt ≤

1
β , and so Gt is (1− ηtγ) = (1− 1

t) expansive. Thus if i∗ ≥ β
γ then

before i∗ the gap is 0 and after i∗ we can apply expansiveness such that

2L
γt
·
km∏
i=t+1

(
1− 1

i

)
=

2L
γt
·
km∏
i=t+1

i − 1
i

=
2L
γkm

,

The remaining case is when i∗ ≤ β
γ − 1. In this case we first have 1-

expansiveness due to convexity that the step size is bounded by 1
β <

2
β .

34

Moreover we have (1− 1
t)-expansiveness for Gt when β

γ ≤ t ≤m. Thus

2Lηi∗ ·
km∏
j= β

γ

(
1− 1

j

)
≤

2Lηi∗β/γ
km

= 2L · 1
β
·
β

γkm
=

2L
γkm

,

Therefore ι1 ≤ 2L
γkm . Finally, for j = 2, . . . , k,

ιj ≤
2L

γ((j − 1)m+ i∗)
·

km∏
t=(j−1)m+i∗+1

t − 1
t

=
2L
γkm

.

Summing up gives the desired result.

In particular, Lemma 3.10 yields the following theorem,

Theorem 3.11. Algorithm 2 is ε-differentially private.

One should contrast this theorem with Theorem 3.6: In the convex

case we bound L2-sensitivity by 2kLη, while in the strongly convex case

we bound it by 2L/γm.

Extensions

In this section we extend our main argument in several ways: (ε,δ)-

differential privacy, mini-batching, model averaging, fresh permutation

at each pass, and finally constrained optimization. These extensions can

be easily incorporated to standard PSGD algorithm, as well as our private

algorithms 1 and 2, and are used in our empirical study later. We close

this section with a discussion on the limitations of our analysis.

(ε,δ)-Differential Privacy. We can also obtain (ε,δ)-differential privacy

easily using Gaussian noise (see Theorem 2.19). We have that

Lemma 3.12. Let A(r;S) be a non-adaptive randomized algorithm where r
denotes the randomness of the algorithm and S denote the dataset. Suppose

35

that
sup
S∼S ′

sup
r
‖A(r;S)−A(r;S ′)‖ ≤ ∆.

Then for any ε ∈ (0,1), publishing A(r;S) +κ where each component of κ is
sampled using (2.3) ensures (ε,δ)-differential privacy.

In particular, combining this with our L2-sensitivity results, we get

the following two theorems,

Theorem 3.13 (Convex and Constant Step). Algorithm 1 is (ε,δ)-differentially
private if each component of κ at line 3 is sampled according to equation (2.3).

Theorem 3.14 (Strongly Convex and Decreasing Step). Algorithm 2 is
(ε,δ)-differentially private if each component of κ at line 3 is sampled according
to equation (2.3).

Mini-batching. A popular way to do SGD is that at each step, instead of

sampling a single data point zt and do gradient update with respect to it,

we randomly sample a batch B ⊆ [m] of size b, and do

wt = wt−1 − ηt
1
b

∑
i∈B

`′i(wt−1)

 =
1
b

∑
i∈B

Gi(wt−1).

For permutation SGD, a natural way to employ mini-batch is to partition

the m data points into mini-batches of size b (for simplicity let us assume

that b divides m), and do gradient updates with respect to each chunk. In

this case, we notice that mini-batch indeed improves the sensitivity by a

factor of b. In fact, let us consider neighboring datasets S,S ′, and at step t,

we have batches B,B′ that differ in at most one data point. Without loss of

generality, let us consider the case where B,B′ differ at one data point, then

on S we have wt = 1
b

∑
i∈BGi(wt−1), and on S ′ we have w′t = 1

b

∑
i∈BG

′
i(w
′
t−1),

36

and so

δt =

∥∥∥∥∥∥∥1
b

∑
i∈B

Gi(wt−1)−G′i(w
′
t−1)

∥∥∥∥∥∥∥
≤1
b

B∑
i=1

‖Gi(wt−1)−G′i(w
′
t−1)‖.

We note that for all i except one in B, Gi = G′i , and so by the Growth

Recursion Lemma 2.14, ‖Gi(wt−1)−G′i(w
′
t−1)‖ ≤ ρδt−1 if Gi is ρ-expansive,

and for the differing index i∗, ‖Gi∗(wt−1)−G′i∗(w
′
t−1)‖ ≤min(ρ,1)δt−1 + 2σt.

Therefore, for a uniform bound ρt on expansiveness and σt on bound-

edness (for all i ∈ B, which is the case in our analysis), we have that

δt ≤ ρtδt−1 + 2σt
b . This implies a factor b improvement for all our sensitivity

bounds.

Model Averaging. Model averaging is a popular technique for SGD. For

example, given iterates w1, . . . ,wT , a common way to do model averaging

is either to output 1
T

∑T
t=1wt or output the average of the last logT iterates.

We show that model averaging will not affect our sensitivity result, and in

fact it will give a constant-factor improvement when earlier iterates have

smaller sensitivities. We have the following lemma.

Lemma 3.15 (Model Averaging). Suppose that instead of returningwT at the
end of the optimization, we return an averaged model w̄ =

∑T
t=1αtwt, where

αt is a sequence of coefficients that only depend on t,T . Then,

sup
S∼S ′

sup
r
‖w̄ − w̄′‖ ≤

T∑
t=1

αt‖wt −w′t‖ =
T∑
t=1

αtδt.

In particular, we notice that the δt’s we derived before are non-decreasing, so
the sensitivity is bounded by (

∑T
t=1αt)δT .

Fresh Permutation at Each Pass. We note that our analysis extends ver-

37

batim to the case where in each pass a new permutation is sampled. This

is because our analysis applies to any fixed permutation.

Constrained Optimization. Until now, our SGD algorithm is for uncon-

strained optimization. That is, the hypothesis spaceW is the entire R
d .

Our results easily extend to constrained optimization where the hypothe-

sis spaceW is a convex set C. That is, our goal is to compute minw∈C LS(w).

In this case, we change the original gradient update rule 2.1 to the pro-
jected gradient update rule:

wt =
∏
C

(
wt−1 − ηt`′t(wt−1)

)
, (3.5)

where
∏
C(w) = argminv ‖v −w‖ is the projection of w to C. It is easy to see

that our analysis carries over verbatim to the projected gradient descent.

In fact, our analysis works as long as the optimization is carried over a

Hilbert space (i.e., the ‖·‖ is induced by some inner product). The essential

reason is that projection will not increase the distance (‖
∏
u −

∏
v‖ ≤

‖u − v‖), and thus will not affect our sensitivity argument.

Limitations. Our analysis so far applies to permutation-based stochas-

tic gradient descent and variants where the randomness of the SGD is

non-adaptive. We note that while PSGD is commonly used in practice, in

theoretical studies one often looks at sampling-with-replacement method,

where in each iteration one samples uniformly and independently from

[m], instead of sampling a permutation at the start and cycling through it.

The convergence behavior of sampling-with-replacement method is much

better well-understood than sampling-without-replacement method (i.e.

permutation-based). However, with sampling-with-replacement method

one can only hope for (ε,δ)-differential privacy because with tiny proba-

bility one always encounters the differing data point and so a vast amount

of noise is needed.

Our analysis so far also fails for adaptive randomized algorithms.

38

An important example to this end is the Nesterov’s momentum method,

which has fast convergence guarantee in theory. Extending our analysis

to handle momentum method seems to be challenging and important.

Convergence of Optimization

We now bound the optimization error of our private PSGD algorithms.

More specifically, we bound the excess empirical risk LS(w) − L∗S where

LS(w) is the loss of the output w of our private SGD algorithm and L∗S is

the minimum obtained by any w in the feasible setW . Note that in PSGD

we sample data points without replacement. While sampling without re-

placement benefits our L2-sensitivity argument, its convergence behavior

is poorly understood in theory. Our results are based on very recent ad-

vances by Shamir Shamir (2016) on the sampling-without-replacement

SGD.

As in Shamir Shamir (2016), we assume that the loss function `i takes

the form of `i(〈w,xi〉) + r(w) where r is some fixed function. Further we

assume that the optimization is carried over a convex set C of radius R

(i.e., ‖w‖ ≤ R for w ∈ C). We use projected PSGD algorithm (i.e., we use

the projected gradient update rule 3.5).

Finally, R(T) is a regret bound if for any w ∈W and convex-Lipschitz

`1, . . . , `T ,
∑T
t=1 `t(wt) −

∑T
t=1 `t(w) ≤ R(T) and R(T) is sublinear in T . We

use the following regret bound,

Theorem 3.16 (Zinkevich Zinkevich (2003)). For SGD with constant step
size η1 = η2 = · · · = ηT = η, the regret bound R(T) is bounded by R2

2η + L2T η
2 .

Proof. The proof follows exactly the same argument as Theorem 1 of

Zinkevich Zinkevich (2003), except we change the step size in the final

accumulation of errors.

We are now ready to bound the excess empirical risk. We start with

the following simple lemma.

39

Lemma 3.17 (Error Introduced by Privacy). Consider L-Lipschitz and β-
smooth optimization. Let w be the output of the non-private SGD algorithm, κ
be the noise of the output perturbation, and w̃ = w +κ. Then LS(w)−LS(w̃) ≤
L‖κ‖.

Convex Optimization. If `(·, z) is convex, we use the following theorem

from Shamir Shamir (2016),

Theorem 3.18 (Corollary 1 of Shamir Shamir (2016)). Let T ≤ m (that
is we take at most 1-pass over the data). Suppose that each iterate wt is
chosen from W , and the SGD algorithm has regret bound R(T), and that
supt,w∈W |`t(w)| ≤ R, and ‖w‖ ≤ R for all w ∈ W . Finally, suppose that each
loss function `t takes the form ¯̀(〈w,xt〉)+r(w) for some L-Lipschitz ¯̀(·,xt) and
‖xt‖ ≤ 1, and a fixed r, then

E

 1
T

T∑
t=1

LS(wt)−LS(w∗)

 ≤ R(T)
T

+
2(12 +

√
2L)R

√
m

.

Together with Theorem 3.16, we thus have the following lemma,

Lemma 3.19. Consider the same setting as in Theorem 3.18, and 1-pass
PSGD optimization defined according to rule (3.5). Suppose further that we
have constant learning rate η = R

L
√
m

. Finally, let w̄m be the model averaging
1
m

∑T
t=1wt. Then,

E[LS(w̄T)−L∗S] ≤ (L+ 2(12 +
√
L))R

√
m

.

Now we can bound the excess empirical risk as follows,

Theorem 3.20 (Convex and Constant Step Size). Consider the same setting
as in Lemma 3.19 where the step size is constant η = R

L
√
m

. Let w̃ = w̄T +κ be

40

the result of output perturbation. Then

E[LS(w̃)−L∗S] ≤ (L+ (2(12 +
√
L))R

√
m

+
2dLR
ε
√
m
.

Proof. The output of the private PSGD algorithm is w̃ = w̄T +κ, where κ

is distributed according to a Gamma distribution Γ (d, ∆2
ε). By Lemma 3.5,

∆2 ≤ 2Lη = 2R√
m

. Therefore by Lemma 3.17, Eκ[LS(w̃) − LS(w̄m)] ≤ 2dR
ε
√
m

,

where we use the fact that the expectation of the Gamma distribution is
d∆2
ε . Summing up gives the bound.

Note that the term 2dLR
ε
√
m

corresponds to the expectation of L‖κ‖.

Strongly Convex Optimization. If `(·, z) is γ-strongly convex, we instead

use the following theorem,

Theorem 3.21 (Theorem 3 of Shamir Shamir (2016)). SupposeW has diam-
eter R, and LS(·) is γ-strongly convex onW . Assume that each loss function `t
takes the for ¯̀(〈wt,xt〉) + r(w) where ‖xi‖ ≤ 1, r(·) is possibly some regulariza-
tion term, and each ¯̀(·,xt) is L-Lipschitz and β-smooth. Furthermore, suppose
supw∈W ‖`′t(w)‖ ≤ G. Then for any 1 < T ≤m, if we run SGD for T iterations
with step size ηt = 1/γt, we have

E

 1
T

T∑
t=1

LS(wt)−LS(w∗)

 ≤ c · ((L+ βR)2 +G2) logT
γT

,

where c is some universal positive constant.

Using the same argument as in the convex case, we immediately have

the following theorem,

Theorem 3.22 (Strongly Convex and Decreasing Step Size). Consider the
same setting as in Theorem 3.21 where the step size is ηt = 1

γt . Consider 1-pass
PSGD. Let w̄T be the result of model averaging and w̃ = w̄T +κ be the result of
output perturbation. Then E[LS(w̃)−LS(w∗)] ≤ c · ((L+βR)2+G2) logm

γm + 2dG2

εγm .

41

Several remarks are in order. (i) Our excess empirical risk bounds are

weaker than those obtained in Bassily et al. Bassily et al. (2014), where

in the convex case their bound is O
(
LR log3/2(m/δ)

√
d log(1/δ)

εm

)
, and in the

strongly convex case their bound is O
(
L2 log2(m/δ)d log(1/δ)

γε2m2

)
. (ii) However,

our bounds are for a single pass through the data, while theirs need m

passes. (iii) Our bounds are for ε-differential privacy, while theirs are

for (ε,δ)-differential privacy (δ > 0). (iv) Finally, our bounds need more

assumptions: Specifically, we assume that `t takes the special form of
¯̀(〈w,xt〉) + r(w).

3.3 Empirical Evaluation

In this section we conduct a comprehensive empirical study investigating

three alternatives for private SGD in RDBMSes: Two previously proposed

state-of-the-art private SGD algorithms, SCS13 Song et al. (2013) and

BST14 Bassily et al. (2014), and our algorithms which are instantiations

of the output perturbation method with our new analysis.

In our study we try to answer the following four main questions re-

garding the three issues for a good private in-RDBMS SGD: High accuracy,

low overhead and ease of integration.

1. What is the effort to integrate each algorithm into an in-RDBMS system?

2. How does the test accuracy of our algorithms compare to SCS13 and
BST14?

3. How do various parameters, such as mini-batch sizes, number of passes
(epochs), and privacy parameters, affect the test accuracy?

4. What is the runtime overhead when we deploy these algorithms in real
data analytics systems?

42

As a summary, our main findings are the following: (i) Our SGD algo-

rithm requires almost no changes to Bismarck, while both SCS13 and

BST14 require deeper changes. (ii) Under the same differential privacy

guarantees, our private SGD algorithms yield substantially better accu-

racy than SCS13 and BST14, for all datasets and settings of parameters

we test. (iii) As for the effect of parameters, our empirical results align

well with the theory. For example, as one might expect, mini-batch sizes

are important for reducing privacy noise. The number of passes is more

subtle. For our algorithm, if the learning task is only convex, more passes

result in larger noise (e.g., see Lemma 3.5), and so give rise to potentially

worse test accuracy. On the other hand, if the learning task is strongly

convex, the number of passes will not affect the noise magnitude (e.g., see

Lemma 3.10). As a result, doing more passes may lead to better conver-

gence and thus potentially better test accuracy. Interestingly, we note that

slightly enlarging mini-batch size can reduce noise very effectively so it

is affordable to run our private algorithms for more passes to get better

convergence in the convex case. This corroborates the results of Song et al.

(2013) that mini-batches are helpful in private SGD settings. (iv) Our

algorithms incur virtually no overhead, while SCS13 and BST14 run much

slower. The reason is that our algorithms only need to inject noise once

at the end while SCS13 and BST14 need to inject noise at every gradient

update step.

In the rest of this section we give more details of our empirical study.

Our discussion is structured as follows: In Section 3.3 we first discuss the

implemented algorithms. In particular, we discuss how we modify SCS13

and BST14 to make them better fit into our experiments. We also give

some remarks on other relevant previous algorithms, and on parameter

tuning. Then in Section 3.3 we discuss the effort of integrating different

algorithms into Bismarck. Next in Section 3.3 we discuss the experimental

design and datasets for testing accuracy and runtime. Then in Section 3.3,

43

we report the results on test accuracy for various datasets and parameter

settings, and discuss the effects of parameters. Finally in Section 3.3, we

report runtime overhead.

Implemented Algorithms

We first discuss implementations of our algorithms, SCS13 and BST14.

Importantly, we extend both SCS13 and BST14 to make them better fit into

our experiments. Among these extensions, probably most importantly, we

extend BST14 to support a smaller number of iterations through the data

and reduce the amount of noise needed for each iteration. Our extension

makes BST14 more competitive in our experiments.

Our Algorithms. We implement Algorithms 1 and 2 with the extensions

of mini-batching and constrained optimization (see Section 3.2). Note

that our algorithms invoke a standard PSGD algorithm as a black-box and

Bismarck already supports mini-batching and constrained optimization.

Therefore the only change we need to make for Algorithms 1 and 2 is the

setting of L2-sensitivity parameter ∆2 at line 3 of respective algorithms,

which we divide by b if the mini-batch size is b.

BST14 Bassily et al. (2014). The original BST14 algorithm needs O(m2)

iterations to finish, which is prohibitive for even moderate sized datasets.

We extend it to support cm iterations for some constant c. Reducing the

number of iterations means that potentially we can reduce the amount
of noise for privacy because data is “less examined.” This is indeed the

case: One can go through the same proof in Bassily et al. (2014) with a

smaller number of iterations, and show that each iteration only needs a

smaller amount of noise than before (unfortunately this does not give

convergence results). Our extension makes BST14 more competitive. In

fact it yields significantly better test accuracy compared to the case where

one naı̈vely stops BST14 after c passes, but the noise magnitude in each

44

iteration is the same as in the original paper Bassily et al. (2014) (which is

for m passes). The extended BST14 algorithms are given in Algorithm 3

and 4. Finally, we also make straightforward extensions so that BST14

supports mini-batching.

Algorithm 3 Convex BST14 Constant with Constant Epochs

Require: `(·, z) is convex for every z, η ≤ 2/β.
Input: Data S, parameters k,ε,δ,d,L,R

1: function ConvexBST14ConstNpass(S,k,ε,δ,d,L,R)
2: m← |S |
3: T ← km
4: δ1← δ/km
5: ε1← Solution of ε = T ε1(eε1 − 1) +

√
2T ln(1/δ1)ε1

6: ε2←min(1,mε1/2)
7: σ2← 2ln(1.25/δ1)/ε2

2
8: w← 0
9: for t = 1,2, . . . ,T do

10: it ∼ [m] and let (xit , yit) be the data point.
11: z ∼N (0,σ2ιId) . ι = 1 for

logistic regression, and in general is the L2-sensitivity localized to an
iteration; Id is d-dimensional identity matrix.

12: w ←
∏
W

(
w − ηt(∇`(w; (xit , yit) + z)

)
where ηt = 2R

G
√
t

and G =
√
dσ2 + b2L2.

13: return wT

SCS13 Song et al. (2013). We also modify Song et al. (2013), which

originally only supports one pass through the data, to support multi-

passes over the data.

Other Related Work. We also note the work of Jain, Kothari and Thakurta Jain

et al. (2012) which is related to our setting. In particular their Algorithm

6 is similar to our private SGD algorithm in the setting of strong convexity

and (ε,δ)-differential privacy. However, we note that their algorithm uses

Implicit Gradient Descent (IGD), which belongs to proximal algorithms

45

Algorithm 4 Strongly Convex BST14 with Constant Epochs

Input: Data S, parameters k,ε,δ,d,L,R
1: function StronglyConvexBST14ConstNpass(S,k,ε,δ,d,L,R)
2: m← |S |
3: T ← km
4: δ1← δ/km
5: ε1← Solution of ε = T ε1(eε1 − 1) +

√
2T ln(1/δ1)ε1

6: ε2←min(1,mε1/2)
7: σ2← 2ln(1.25/δ1)/ε2

2
8: w← 0
9: for t = 1,2, . . . ,T do

10: it ∼ [m] and let (xit , yit) be the data point.
11: z ∼N (0,σ2ιId)
12: w←

∏
W

(
w − ηt(∇`(w; (xit , yit) + z)

)
, ηt = 1

γt .

13: return w

(see for example Parikh and Boyd Parikh and Boyd (2014)) and is known

to be more difficult to implement than stochastic gradient methods. Due

to this consideration, in this study we will not compare empirically with

this algorithm. Finally, we also note that Jain et al. (2012) also has an

SGD-style algorithm (Algorithm 3) for strongly convex optimization and

(ε,δ)-differential privacy. This algorithm adds noise comparable to our

algorithm at each step of the optimization, and as a result, we do not

compare with this algorithm either.

Parameter Tuning. We observe that for all the SGD algorithms we con-

sidered, multiple parameters need to be fine-tuned to achieve the best

performance. In particular, the mini-batch sizes, number of passes, L2-

regularization parameter, and privacy parameters all have significant

impact on the final performance. Therefore, a natural attempt is to show

how one can tune these parameters in order to achieve best performance.

However, one should note that this is an issue orthogonal to our main

questions: We are interested in obtaining relative performance of the

46

algorithms for some same (sensible) setting of parameters, rather than

seeking the best parameters for one particular algorithm. Moreover, we

note that under differential privacy, tuning parameters must also be done

privately, and there has been an independent line of research Chaudhuri

et al. (2011); Chaudhuri and Vinterbo (2013) investigating it. As a result,

we choose to compare performance of these algorithms under various
settings of parameters, and leave tuning for the best performing parameters

as separate future work.

Integration with Bismarck

We now explain how we integrate private SGD algorithms in RDBMS. To

begin with, we note that the state-of-the-art way to do in-RDBMS is via the

User Defined Aggregates (UDA) offered by almost all RDBMSes Gray et al.

(1997). Using UDAs enables scaling to larger-than-memory datasets seam-

lessly while still being fast.1 A well-known open source implementation

of the UDAs required is Bismarck Feng et al. (2012). Bismarck achieves

high performance and scalability through a unified architecture of in-

RDBMS data analytics systems using the permutation-based stochastic

gradient descent.

Therefore, we use Bismarck to experiment with private SGD inside

RDBMS. Specifically, we use Bismarck on top of PostgreSQL, which im-

plements the UDA for SGD in C to provide high runtime efficiency. Our

results carry over naturally to any other UDA-based implementation of

analytics in an RDBMS. The rest of this section is organized as follows.

We first describe Bismarck’s system architecture. We then compare the

system extensions and the implementation effort needed for integrating

our private PSGD algorithm as well as SCS13 and BST14.
1The MapReduce abstraction is similar to an RDBMS UDA mah. Thus our implementation

ideas apply to MapReduce-based systems as well.

47

Dataset Table

Shuffle

Initialize

Transition

Terminate

Converged w w′

(A) → [Regular Bismarck]

No

Yes (B) Noise [Ours]

(C) Noise [SCS13, BST14]

Figure 3.1: (A) System architecture of regular Bismarck. (B) Extension to
implement our algorithms. (C) Extension to implement any of SCS13 and
BST14.

Figure 3.1 (A) gives an overview of Bismarck’s architecture. The

dataset is stored as a table in PostgreSQL. Bismarck permutes the ta-

ble using an SQL query with a shuffling clause, viz., ORDER BY RANDOM().

A pass (or epoch, which is used more often in practice) of SGD is im-

plemented as a C UDA and this UDA is invoked with an SQL query for

each epoch. A front-end controller in Python issues the SQL queries

and also applies the convergence test for SGD after each epoch. The

developer has to provide implementations of three functions in the UDA’s

C API: initialize, transition, and terminate, all of which operate on the

aggregation state, which is the quantity being computed over the table.

To explain how this works, we compare SGD with a standard SQL

aggregate: AVG. The state for AVG is the 2-tuple (sum,count), while that for

SGD is the model vector w. The function initialize sets (sum,count) = (0,0)

for AVG, while for SGD, it setsw to the value given by the Python controller

(the previous epoch’s output model). The function transition updates

the state based on a single tuple (one example). For example, given a tuple

48

with value x, the state update for AVG is as follows: (sum,count) += (x,1).

For SGD, x is the feature vector and the update is the update rule for SGD

with the gradient on x. If mini-batch SGD is used, the updates are made

to a temporary accumulated gradient that is part of the aggregation state

along with counters to track the number of examples and mini-batches

seen so far. When a mini-batch is over, the transition function updates w

using the accumulated gradient for that mini-batch using an appropriate

step size. The function terminate computes sum/count and outputs it for

AVG, while for SGD, it simply returns w at the end of that epoch.

It is easy to see that our private SGD algorithm requires almost no

change to Bismarck – simply add noise to the final w output after all

epochs, as illustrated in Figure 3.1 (B). Thus, our algorithm does not

modify any of the RDBMS-related C UDA code. In fact, we were able

to implement our algorithm in about 10 lines of code (LOC) in Python

within the front-end Python controller. In contrast, both SCS13 and

BST14 require deeper changes to the UDA’s transition function because

they need to add noise at the end of each mini-batch update. Thus, imple-

menting them required adding dozens of LOC in C to implement their

noise addition procedure within the transition function, as illustrated

in Figure 3.1 (C). Furthermore, Python’s scipy library already provides

the sophisticated distributions needed for sampling the noise (gamma

and multivariate normal), which our algorithm’s implementation exploits.

But for both SCS13 and BST14, we need to implement some of these

distributions in C so that it can be used in the UDA.2

Experimental Method and Datasets

We now describe our experimental method and datasets used for testing

accuracy and runtime overhead.
2One could use the Python-based UDAs in PostgreSQL but that incurs a significant runtime

performance penalty compared to C UDAs.

49

Test Scenarios. We consider four main scenarios to evaluate the algo-

rithms: (1) Convex, ε-differential privacy, (2) Convex, (ε,δ)-differential

privacy, (3) Strongly Convex, ε-differential privacy, and finally (4) Strongly

Convex, (ε,δ)-differential privacy. Note that BST14 only supports (ε,δ)-

differential privacy. Thus for tests (1) and (3) we compare non-private

algorithm, our algorithms, and SCS13. For tests (2) and (4), we compare

non-private algorithm, our algorithms, SCS13 and BST14. For each of

these scenarios, we train models on standard datasets used for evaluating

SGD and measure the test accuracy of the resulting models on the test

datasets. As is common in the literature for evaluating SGD in the context

of convex optimization, we choose logistic regression models. We use the

standard logistic regression for the convex case (Tests (1) and (2)), and

logistic regression regularized by L2-regularizer for the strongly convex

case (Tests (1) and (3)). We now describe the datasets and the parameter

spaces considered for each of them.

Dataset Task Train Size Test Size #Dimensions

MNIST 10 classes 60000 10000 784 (50) [∗]
Protein Binary 72876 72875 74

Forest Binary 498010 83002 54

Table 3.2: Datasets. Each row gives the name of the dataset, number
of classes in the classification task, sizes of training and test sets, and
finally the number of dimensions. [∗]: For MNIST, it originally has 784
dimensions, which is difficult for differential privacy as the noise scales
linearly with the number of dimensions. Therefore we randomly project
it to 50 dimensions. All data points are normalized to the unit sphere.

Datasets. We consider three standard benchmark datasets: MNIST3,

Protein4, and Forest Covertype5. MNIST is a popular dataset used for
3
http://yann.lecun.com/exdb/mnist/.

4
http://osmot.cs.cornell.edu/kddcup/datasets.html.

5
https://archive.ics.uci.edu/ml/datasets/Covertype.

http://yann.lecun.com/exdb/mnist/
http://osmot.cs.cornell.edu/kddcup/datasets.html
https://archive.ics.uci.edu/ml/datasets/Covertype

50

image classification. MNIST poses a challenge to differential privacy for

three reasons: First, it has 784 dimensions which is relatively more high

dimensional than other datasets considered here. To get meaningful test

accuracy we thus use Gaussian Random Projection, which is known to

preserve differential privacy, to randomly project to 50 dimensions. This

random projection only incurs very small loss in test accuracy, and thus

the performance of non-private SGD on 50 dimensions will serve the

baseline. Second, MNIST is of medium size and differential privacy is

known to be more difficult for medium or small sized datasets. Finally,

MNIST is a multiclass classification (there are 10 digits), we built “one-vs.-

all” multiclass logistic regression models. Using the “one-vs.-all” method

means that we need to construct 10 binary models (one for each digit).

Thus for privacy, one needs to split the privacy budget across sub-models.

We used the simplest composition theorem Dwork and Roth (2014), and

divide the privacy budget evenly.

For Protein dataset, because its test dataset does not have labels, we

randomly partition the training set into halves to form train and test

datasets. Logistic regression models have very good test accuracy on it.

Finally, Forest Covertype is a large dataset with 581012 data points, almost

6 times larger than previous ones. We split it to have 498010 training

points and 83002 test points. We use this large dataset for two purposes:

First, in this case, one may expect that privacy will follow more easily. We

test to what degree this holds for different private algorithms. Second,

since training on such large datasets is time consuming, it is desirable to

use it to measure runtime overheads of various private algorithms.

Parameters. For MNIST we vary ε in {0.1,0.2,0.5,1,2,4}. For Protein and

Covertype, we vary ε in {0.01,0.02,0.05,0.1,0.2,0.4} (as they are binary

classification and we do not need to divide by 10). δ is set to be 1/m where

m is the size of the training set size. We vary mini-batch sizes in {1,10,50},
and number of passes in {1,10,20}. The L2-regularization parameter is

51

0.0001. Finally, Table 3.3 summarizes step sizes for different algorithms

and tests.

Non-private Ours SCS13 BST14

C + ε-DP Constant Constant 1√
t

×
C + (ε,δ)-DP Constant Constant 1√

t
Alg. 3

SC + ε-DP 1
γt min(1

β ,
1
γt)

1√
t

×
SC + (ε,δ)-DP 1

γt min(1
β ,

1
γt)

1√
t

Alg. 4

Table 3.3: Step Sizes for different test scenarios and algorithms. C: Convex,
SC: Strongly Convex, DP: differential privacy. For SCS13 and strongly
convex case we choose step size 1/

√
t because results inSong et al. (2013)

suggest that this step size yields smaller variance with small λ = 0.0001.
In our experiments, these two step sizes yield very similar accuracy.

Experimental Environment. All the experiments were run on a machine

with Intel Xeon E5-2680 2.50GHz CPUs (48-core) and 64GB RAM running

Ubuntu 14.04.4.

Accuracy and Effects of Parameters

We now present results on test accuracy and analyze the effects of parame-

ters. Due to lack of space, we only report partial results for representative

parameter settings.

Test Accuracy. Figure 3.2 gives the test accuracy results of MNIST, Protein

and Covertype for all 4 test scenarios with mini-batch size 50 and 10

passes over the data. For all the four tests we see that our algorithms give
significantly better accuracy, up to 4x better than SCS13 and up to 3.5x better
than BST14.

SCS13 and BST14 exhibit much better accuracy on Protein than on

MNIST, since logistic regression fits well to the problem. Specifically,

BST14 has very close accuracy as our algorithms, though our algorithms

52

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless

Ours

SCS13

(a) MNIST.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless

Ours

SCS13

BST14

(b) MNIST.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless

Ours

SCS13

(c) MNIST.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless

Ours

SCS13

BST14

(d) MNIST.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless

Ours

SCS13

(e) Protein.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0
C

la
ss

if
ic

a
ti

o
n
 A

cc
u
ra

cy
Noiseless

Ours

SCS13

BST14

(f) Protein.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless

Ours

SCS13

(g) Protein.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless

Ours

SCS13

BST14

(h) Protein.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless

Ours

SCS13

(i) Forest Covertype.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless

Ours

SCS13

BST14

(j) Forest Covertype.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless

Ours

SCS13

(k) Forest Covertype.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

Noiseless

Ours

SCS13

BST14

(l) Forest Covertype.

Figure 3.2: Test accuracy for all 4 tests with mini-batch size 50 and 10
passes. ε is varied in {0.1,0.2,0.5,1.0,2.0,4.0}, and δ = 1/m. For Test 3
and Test 4, the L2-regularization parameter λ = 0.0001. For constrained
optimization (SCS13 in the regularized case), the radius is set to 1/λ, oth-
erwise we report results of unconstrained optimization. Each row gives
the results of 4 tests, where Test 1 is Convex, (ε,0)-DP, Test 2 is Convex,
(ε,δ)-DP, Test 3 is Strongly Convex, (ε,0)-DP, and Test 4 is Strongly Con-
vex, (ε,δ)-DP. For Test 1 and 3, we compare Noiseless, our algorithm and
SCS13. For Test 2 and 4, we compare all four algorithms.

still consistently outperform BST14. The accuracy of SCS13 decreases

significantly with smaller ε.

For Covertype, even on this large dataset, SCS13 and BST14 give much

worse accuracy compared to ours. The accuracy of our algorithms is close

to the baseline at around ε = 0.05. The accuracy of SCS13 and BST14

slowly improves with more passes over the data. Specifically, the accuracy

of BST14 approaches the baseline only after ε = 0.4.

53

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

1 pass

10 passes

20 passes

(a) Convex, Test 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.2

0.4

0.6

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

1 pass

10 passes

20 passes

(b) Strongly Convex, Test 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

mini-batch = 1

mini-batch = 10

mini-batch = 50

(c) Convex, Test 1

Figure 3.3: (a), (b) The effect of number of passes: We report the results
on MNIST dataset. We contrast Test 1 (Convex ε-DP) using mini-batch
size 1, with Test 3 (Strongly Convex ε-DP) using mini-batch size 50. In
the former case, more passes through the data introduces more noise
due to privacy and thus results in worse test accuracy. In the latter case,
more passes improves the test accuracy as it helps convergence while no
more noise is needed for privacy. (c) The effect of mini-batch size. We
run again Test 1 (Convex, ε-DP) with 20 passes through the data, and
vary mini-batch size in {1,10,50}. We note that as soon as we increase
mini-batch size to 10 the test accuracy improves drastically from 0.45 to
0.71.

Finally, we observe that in some cases our private algorithms actually

yield better test accuracy than the baseline. This is not surprising because

test accuracy amounts to generalization risk, and it is known that deliber-

ately introducing small noise can better stabilize the output hypothesis

and helps generalization Shalev-Shwartz et al. (2010).

Number of Passes (Epochs). Intuitively, more passes through the data

can improve the convergence of SGD and identify a better hypothesis.

However, differential privacy brings in another dimension: More passes

over the data implies that data is examined more thoroughly and so more

noise is needed for privacy. As a result, we face a tradeoff here: Taking

more passes can improve accuracy of the non-private solution, yet one

may inject more noise for privacy, and thus harm the accuracy in the end.

This intuition is made precise in the case of convex optimization,

where Lemma 3.5 shows that with k-passes the L2-sensitivity goes up to

54

0 5 10 15 20
Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
u
n
ti

m
e
 (

se
c)

Noiseless

Ours

SCS13

BST14

(a) MNIST.

0 5 10 15 20
Number of epochs

0.0

0.5

1.0

1.5

2.0

R
u
n
ti

m
e
 (

se
c)

Noiseless

Ours

SCS13

BST14

(b) Protein.

0 5 10 15 20
Number of epochs

0

2

4

6

8

10

R
u
n
ti

m
e
 (

se
c)

Noiseless

Ours

SCS13

BST14

(c) Forest Covertype.

100 101 102 103

Batch size (in logscale)

0.0

0.1

0.2

0.3

0.4

0.5

R
u
n
ti

m
e
 (

se
c;

 i
n
 l
o
g
sc

a
le

) Noiseless

Ours

SCS13

BST14

(d) MNIST.

100 101 102 103

Batch size (in logscale)

0.0

0.2

0.4

0.6

0.8

R
u
n
ti

m
e
 (

se
c;

 i
n
 l
o
g
sc

a
le

) Noiseless

Ours

SCS13

BST14

(e) Protein.

100 101 102 103

Batch size (in logscale)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
u
n
ti

m
e
 (

se
c;

 i
n
 l
o
g
sc

a
le

)

Noiseless

Ours

SCS13

BST14

(f) Forest Covertype.

Figure 3.4: Runtimes of the implementations on Bismarck. (a), (b),
(c): Vary the number of epochs with mini-batch size = 10. (d), (e), (f):
Vary the mini-batch size for a single epoch. Only the results of Strongly
Convex, (ε,δ)-DP are reported, and other settings have very similar trends.
Noiseless is the regular mini-batch SGD in Bismarck. We fix ε = 0.1.

O(kη). In fact, our experiments confirm that the larger noise due to more

passes in fact harms the accuracy. Figure 3.3 (a) reports test accuracy in

the convex case as we run our algorithm 1 pass, 10 passes and 20 passes

through the MNIST data. The accuracy drops from 0.71 to 0.45 for ε = 4.0.

The case of strong convexity is different, as Lemma 3.10 shows that

the L2-sensitivity is independent of the number of passes. As a result no

more noise will be needed for privacy in the strongly convex case, and

more passes may help convergence. In fact, as Figure 3.3 (b) confirms that

more passes does improve the test accuracy.

Mini-batch Sizes. We find that slightly enlarging the mini-batch size can

effectively reduce the noise and thus allow the private algorithm to run

more passes in the convex setting. This is useful since it is very common

in practice to adopt a mini-batch size at around 10 to 50. To illustrate the

effect of mini-batch size we consider the same test as we did above for

55

measuring the effect of number of passes: We run Test 1 with 20 passes

through the data, but vary mini-batch sizes in {1,10,50}. Figure 3.3 (c)

reports the test accuracy for this experiment: As soon as we increase

mini-batch size to 10 the test accuracy already improves drastically from

0.45 to 0.71.

Runtime Overhead

We now compare the runtime overheads of our private SGD algorithm in-

tegrated into Bismarck against the regular, noiseless version, as well as the

other algorithms. Unlike the accuracy experiments, the key parameters

that affect runtimes are the number of epochs and the batch sizes. Thus,

we vary each of these parameters, while fixing the others. The runtimes

are the average of 4 warm-cache runs and all datasets fit in the buffer

cache of PostgreSQL. The error bars represent 90% confidence intervals.

The results are plotted in Figure 3.4 (a)–(c) and Figure 3.4 (d)–(f) (only

the results of strongly convex, (ε,δ)-differential privacy are reported; the

other results are similar and thus, we skip them here for brevity).

The first observation is that our algorithm incurs virtually no runtime

overhead over noiseless Bismarck, which is as expected because our al-

gorithm only adds noise once at the end of all epochs. In contrast, both

SCS13 and BST14 incur significant runtime overheads in all settings and

datasets. In terms of runtime performance for 20 epochs and a batch

size of 10, both SCS13 and BST14 are between 2x and 3x slower than our

algorithm. The gap grows larger as the batch size is reduced: for a batch

size of 1 and 1 epoch, both SCS13 and BST14 are up to 6x slower than

our algorithm. This is expected since these algorithms invoke expensive

random sampling code from sophisticated distributions for each mini-

batch. When the batch size is increased to 500, the runtime gap between

these algorithms practically disappears as the random sampling code is

invoked much less often. Overall, we find that not only is our algorithm

56

easier to integrate with existing popular RDBMSes, it can be significantly

faster than the alternative algorithms.

57

4 differential privacy and model inversion

attacks

“...There are various important parts of modern mathematics in
which the empirical origin is untraceable, or, if traceable, so remote
that it is clear that the subject has undergone a complete meta-
morphosis since it was cut off from its empirical roots... the only
remedy seems to me to be the rejuvenating return to the source:
the re-injection of more or less directly empirical ideas.”

— John von Neumann: The Mathematician

Differential privacy is a behavioral definition in the sense that it de-

fines a property of the process of private computation. However, the

definition of differential privacy does not directly say what kind of pri-

vacy it protects. To better understand its implications to privacy, one has

to define “semantic” models to reason about the meaning of differential

privacy. In fact, ever since the first work of differential privacy Dwork

et al. (2006), various work Kasiviswanathan and Smith (2008); Kifer and

Machanavajjhala (2011); Li et al. (2013) have studied the semantics of

differential privacy.

Unfortunately, even after much of this work and many debates about

what differential privacy does and does not protect, we observe that peo-

ple (even accomplished privacy researchers) sometimes attempt to use

differential privacy to counter privacy breaches that differential privacy

was never designed to prevent. This issue certainly goes beyond aca-

demic interests given that differential privacy has become the de-facto

standard for protecting data privacy, and large data vendors have been

using systems based on differential privacy to collect what they cannot

collect before due to privacy concerns Erlingsson et al. (2014). In these

situations, it can be disastrous to use differential privacy as a silver bullet

58

and release whatever has been computed under the differential privacy

umbrella.

In this chapter we move from studying differential privacy to the

boundary between differential privacy and other privacy concerns. Specif-

ically, we examine the relationship between differential privacy and model

inversion attacks (MI attacks), a privacy attack proposed in Fredrikson

et al. (2014) where the authors applied differential privacy as a counter

measure for MI attacks. Our approach is based on a careful study of the
stability of empirical risk minimization. Our main results are twofold: (i)

MI attacks and differential privacy are orthogonal to each other. In fact,

improving the privacy-utility tradeoff of differential privacy will only

worsen the problem of MI attacks. (ii) Along the way of investigating (i),

we show that substantially better privacy-utility tradeoff can be achieved

compared to the functional mechanism Zhang et al. (2012), which is used

in Fredrikson et al. (2014) to train regression models.

4.1 Introduction

Regression models are widely used to extract valuable data patterns in

“sensitive” domains. For example, in personalized medicine, linear re-

gression models are commonly used to predict medication dosages Inter-

national Warfarin Pharmacogenetic Consortium (2009) and other useful

features Diaz and Yeh (2012); McKeague and Qian (2011). For such sce-

narios, individuals’ privacy has become a major concern and learning

with differential privacy (DP) has become the state of the art scheme to

protect data privacy. As a result, differentially private regression, and more

generally private convex learning, has been intensively studied in recent

years by researchers from the security, theory and data management com-

munities Bassily et al. (2014); Chaudhuri et al. (2011); Duchi et al. (2013);

Fredrikson et al. (2014); Jain and Thakurta (2013); Zhang et al. (2012).

59

A notable contribution in the direction of private regression is the

functional mechanism, proposed by Zhang et al. Zhang et al. (2012), which

is a practical mechanism for training differentially-private regression

models. We notice that the functional mechanism has become the state

of the art method in the practice of private regression, and in particular

several research groups Aono et al. (2015); Wang et al. (2015); Winslett

et al. (2012) have adopted the functional mechanism as a basic building

block in their study and initial empirical results are promising.

Our starting point is recent work by Fredrikson et al. Fredrikson

et al. (2014), which used the functional mechanism to train differentially

private linear regression models to predict doses of a medicine called

warfarin from patients’ genomic traits. Unfortunately, they found that

the model accuracy was unacceptable with ε-DP — even for ε as high

as 5. One of the main goals of this chapter is to develop a suitable theory

which allows mechanisms based on simple techniques such as output
perturbation to obtain accurate, differentially private models at reasonable

private levels (e.g., ε = 0.1).

To this end, we start by presenting a precise connection between differ-

ential privacy and stability theory in machine learning. Our formalization

makes a folklore connection between differential privacy and stability

(Chaudhuri) explicit. Specifically, in the setting of learning, we show

that differential privacy is essentially another stability definition, yet it

is so strong that it implies previous stability definitions in the learning

literature. Combining this observation with some machinery from stable

learning theory, we give an analysis showing that simple mechanisms

such as output perturbation can learn every convex-Lipschitz-bounded

problem with strong differential privacy guarantees.

Our analysis has several advantages over previous work. First, it re-
laxes the technical conditions required by Chaudhuri et al. Chaudhuri

60

et al. (2011) for output perturbation1. In particular, we do not require the

loss function to be smooth or differentiable. Second, our analysis reveals

that output perturbation can be used to obtain a much better privacy/u-

tility tradeoff than the functional mechanism. Under the same technical

conditions, we achieve the same tradeoff between differential privacy and

generalization error as that recently proved by Bassily et al. Bassily et al.

(2014), while avoiding use of the exponential mechanism McSherry and

Talwar (2007) and the sophisticated sampling sub-procedure used by Bass-

ily et al. Bassily et al. (2014). This makes our approach widely-applicable

in practical settings.

Following the analysis we derive algorithms for private convex opti-

mization. Our algorithms are regularized versions of the empirical risk

minimization using the Tikhonov regularizer. In contrast to the func-

tional mechanism, where regularization is a heuristic, regularization is

crucial for our theoretical guarantee.

Regularization adds additional parameters that need to be picked

carefully in order to maintain DP. A standard approach used in related

contexts is to employ a private parameter tuning algorithm Chaudhuri

et al. (2011) to select a set of parameters that depends on the training

data. We have implemented this approach to parameter tuning and

refer to the mechanisms using it as the privately-tuned mechanisms in our

empirical study. We also consider a different approach, based on our proof

of generalization error, that picks the parameters in a data independent
manner.

Compared to the functional mechanism, our theoretical analysis shows

that much smaller noise is needed for the same level of differential privacy

for all convex-Lipschitz-bounded learning problems. To further confirm

the utility of our method in practice, we evaluated both of our approaches
1On the other hand, we note that for objective perturbation Kifer et al. Kifer et al.

(2012) relaxed the technical conditions so that the loss function does not need to be
differentiable.

61

using real-world datasets. To this end, we note that as the training set size

increases, the magnitude of noise required by our method vanishes to 0,

while the functional mechanism always requires constant noise. Thus for

sufficiently large training sets, our method is guaranteed (theoretically) to

be better than the functional mechanism. As a result, we choose to evalu-

ate our method on both small and medium-sized datasets. Specifically, we

construct logistic regression models on the diabetes dataset (768 samples,

8 dimensions) and construct linear regression models on the Warfarin

dataset (∼3000 samples, 14 dimensions).

The empirical results are encouraging — our approach produces sub-

stantially more accurate models than the functional mechanism of Zhang

et al. Zhang et al. (2012). Specifically, for the logistic regression models,

we obtain 60%−80% classification accuracy when the privacy budget ε

ranges from 0.1 to 4 (the baseline has 80% accuracy), while the functional

mechanism only gives 40% − 60% accuracy. For the linear regression

models, our mechanisms give up to 20x smaller mean squared error and

provides accurate models even for ε = 0.1, while the functional mecha-

nism provide comparable models only after ε ≥ 5.

Our results described thus far are positive, and follow in the tradition

of a large body of research on differential privacy, which seeks to im-

prove utility/privacy tradeoffs for various problems of interest. However,

Fredrikson et al. Fredrikson et al. (2014) did not only consider differential

privacy, they also considered an attack they term model inversion. As a

simple example, consider a machine learning model w that takes features

x1, . . . ,xd and produces a prediction y. A model-inversion (MI) attack

takes input x1, . . . ,xd−1 and a value y′ that is related to y, and tries to

predict xd (thus “inverting the model”). For example, in Fredrikson et al.

(2014), the authors consider the case where xd is a genetic marker, y is the

warfarin dosage, and x1, . . . ,xd−1 are general background information such

as height and weight. They used an MI attack to predict an individual’s

62

genetic markers based on his or her warfarin dosage, thus violating that

individual’s privacy.

In the final part of our chapter, we consider the impact of our im-

proved privacy-utility tradeoff on MI attacks2 . Here our results are less

positive: in improving the privacy-utility tradeoff, we have increased the

effectiveness of MI attacks. While unintended, upon deeper reflection

this is not surprising: simply put, the improved privacy-utility tradeoff
results in less noise added, and less noise added means the model is easier

to invert. We formalize this discussion and prove that this phenomenon is

quite general, and not an artifact of our approach or this specific learning

task.

What this means for privacy is an open question. If one “only cares”

about differential privacy, then the increased susceptibility to MI attacks

is irrelevant. However, if one believes that MI attacks are significant

(and anecdotal evidence suggests that some medical professionals are con-

cerned about MI attacks), then the fact that improved differential privacy

can mean worse MI exposure warrants further study. In this direction,

our work indeed extends a long line of work that discusses the interaction

of DP and attribute privacy Kifer and Machanavajjhala (2011); Lindell and

Omri (2011); Reed et al. (2010), and gives a realistic application where

misconceptions about DP can lead to unwanted disclosure. It is our hope

that our work might highlight this issue and stimulate more discussion.

Our technical contributions can be summarized as follows:
2Note that specifically this is to measure the success rate of model inversion attacks

over the training set. One may wonder that a more plausible privacy notion should
compare the success rate of model inversion attacks on the training set with that on
the validation training set. However, one should note that this falls exactly into the
guarantees of differential privacy. In fact, the work of Fredrikson et al. (see Figure
1. “Disclosure, private LR”) has also demonstrated that for ε ≤ 1, the difference is
not discernible. On the other hand, the work of Fredrikson et al. does consider using
differential privacy to prevent MI attacks (under the theme of using differential privacy
to protect “genomic privacy”). It is the purpose of this work to clarify that differential
privacy is never designed to prevent such attacks.

63

• We continue the exploration about the connection between stabil-

ity and differential privacy. By borrowing some machinery from

stability theory, we prove that the simple output perturbation mech-

anism can learn every convex-Lipschitz-bounded learning problems

with strong differential privacy. Our analysis relaxes the technical

conditions required by Chaudhuri et al. Chaudhuri et al. (2011)

for output perturbation, and achieves the same tradeoff between

DP and generalization error as proved by Bassily et al. Bassily et al.

(2014), and is much simpler than both.

• Since output perturbation is one of the simplest mechanisms to im-

plement, it means that our method is widely applicable in practice.

We go on to apply the theory to linear regression. We present and

analyze regularized variants of linear regression, and give a detailed

description on how to privately select parameters for regularization.

• We perform an empirical study on both small and medium-sized

datasets, comparing the functional mechanism with our mecha-

nisms to train logistic and linear regression models. Encouragingly,

we observe a substantially better tradeoff between differential pri-

vacy and utility.

• Finally, we study the impact of the improved DP-utility tradeoff on

model inversion attacks studied by Fredrikson et al. Fredrikson et al.

(2014). We demonstrate that as we improve differentially-private

mechanisms, MI attacks become more problematic. We provide a

preliminary analysis of this intriguing phenomenon.

The rest of the chapter is organized as follows. We present the con-

nection between differential privacy and stability theory in Section 4.2,

and discuss the applications in Section 4.3. In Section 4.4, we compare

output perturbation and the functional mechanism with respect to the

privacy-utility or model-inversion efficacy tradeoff.

64

4.2 Differential Privacy and Stability Theory

In this section we present our results on the connection between differen-

tial privacy and stability theory. Our technical results can be summarized

as follows:

DP implies Strongly-Uniform-RO Stability. In Section 4.2, we show

that, in the setting of learning, differential privacy is a strong stability

notion that implies strongly-uniform-RO stability. Strongly-Uniform-RO

stability is the strongest stability notion proposed by Shalev-Shwartz et

al. Shalev-Shwartz et al. (2010) from learning theory.

Norm Stability implies DP. In Section 4.2, we give a stability notion, `2-

RO stability, that leads to differential privacy by injecting a small amount

of noise. `2-RO stability is used implicitly in Shalev-Shwartz et al. (2009)

to prove learnability of convex-Lipschitz-bounded problems under the

condition that the instance loss function is smooth. Our analysis removes

this requirement.

Simpler Mechanism with the Same Generalization Error. In recent

work, Bassily et al. Bassily et al. (2014) give tight bounds (for both training

and generalization errors) for differentially privately learning convex-

Lipschitz-bounded problems. Their mechanisms require the exponential

mechanism and a sophisticated sampling subprocedure. We show in

Section 4.2 that the elementary output perturbation mechanism presented

in Chaudhuri et al. (2011) can give the same tradeoff between differential

privacy and generalization error (however with weaker training error)

for every convex-Lipschitz-bounded learning problem. Our proof relaxes

the technical requirements of Chaudhuri et al. (2011) (smoothness), and

is significantly simpler than both Bassily et al. (2014); Chaudhuri et al.

(2011).

65

Differential Privacy is a Stability Notion

If one writes out the definition of bounded differential privacy (Defini-

tion 2.15) in the language of learning, it becomes: a learning rule A is

ε-differentially private if, for all training set S of size n, for all i ∈ [n], and

all z′ ∈ Z, and any event E, it holds that Pr[A(S) ∈ E] ≤ eεPr[A(S(i)) ∈ E],

where the probability is taken over the randomness of A. When we con-

trast this definition with strongly-uniform-RO stability (Definition 2.5),

the only difference is that the latter considers a particular type of event,

namely for z̄ ∈ Z, the magnitude of `(Ã(S), z̄). At this point, it is somewhat

clear that differential privacy is essentially (yet another) stability notion.

Nevertheless, it is so strong that it implies strongly-uniform-RO stability,

as shown in the following:

Proposition 4.1. Suppose that |`(·, ·)| ≤ B. Let ε > 0 and A be a randomized
learning rule. If A is ε-differentially private, then it is strongly-uniform-
RO stable with rate εstable ≤ B(eε − 1). Specifically, for ε ∈ (0,1), this is
approximately Bε.

Proof. Let fS(w) be the probability density function of A(S). Due to ε-

differential privacy, then for any S, i, z′, fS(w) ≤ eεfS(i)(w). Therefore∣∣∣E[`(Ã(S), z̄)]−E[`(Ã(S(i)), z̄)]
∣∣∣

=
∣∣∣∣∣∫ `(w, z̄)

(
fS(w)− fS(i)(w)

)
dw

∣∣∣∣∣
≤
∫
|`(w, z̄)||fS(w)− fS(i)(w)|dw

≤B
∫
|fS(w)− fS(i)(w)|dw (1)

Note that (e−ε − 1)fS(i)(w) ≤ fS(w) − fS(i)(w) ≤ (eε − 1)fS(i)(w), so |fS(w) −
fS(i)(w)| ≤max{1−e−ε, eε−1}fS(i)(w). Plugging into (1) gives the first claimed

66

inequality. The second inequality follows from the observation that eε +

e−ε ≥ 2.

Two remarks are in order. First, this implication holds without as-

suming anything on the loss function ` except for boundedness. Second,

one may note that the converse of this proposition, however, is not true

in general. For example, consider the case where ` is a constant function

and A(S) = h1 , h2 = A(S(i)). Then A is strongly-uniform-RO stable (with

rate 0!) yet it is clearly not differentially private. Moreover, this example

indicates that, even if strongly-uniform-RO stability has been achieved,

one cannot hope for differential privacy by adding a “small amount” of

noise to the output of A. This is because h1 and h2 can be arbitrarily far

away from each other so the sensitivity of A cannot be bounded. This mo-

tivates us to define another stability notion for the purpose of differential

privacy.

Norm Stability and Noise for DP

In this section we present a different stability notion that does lead to

differential privacy by injecting a small amount of noise. We then use

some machinery from stability theory to quantify the amount of noise

needed. Following our discussion above, a natural idea now is that A(S)

and A(S(i)) shall be close by themselves, rather than being close under the
evaluation of some functions. Because the output of A lies in H, which is

a normed space3 as long as perturbation on), a “universal” notion for

closeness is that A(S) and A(S(i)) are close in norm. This leads to the

following definition.

Definition 4.2 (`2-RO Stability). A learning rule A is `2-RO stable with
rate ε(n), if for any S ∼ Dn, z′ ∼ D and i ∈ [n], ‖A(S(i))−A(S)‖2 ≤ ε(n).

3For simplicity, ‖ · ‖ refers to `2-norm in the rest of the chapter. Our results are
applicable to other settings as long as perturbation is properly defined on the normed
space.

67

Astute readers may realize that this is nothing more than a rephrasing
of the `2-sensitivity of a query (Definition 2.16). Thus, in the spirit of the

output perturbation method mentioned in Section 2.3, if one can bound

`2-RO stability, then we only need to inject a small amount of noise for

differential privacy.

If A is `2-RO stable, then adding a small amount of noise to its output

ensures differential privacy, and thus strongly-uniform-RO stability. How-

ever, without the Lipschitz condition, the resulting hypothesis might be

useless. This is because a small distance (in `2-norm) to A(S) could give

significant change in loss. This presents a barrier for proving learnability

for the private mechanism. Thus in the following, we will restrict our-

selves back to the setting where we assume that ` is convex and Lipschitz

(in w).

We now move on to quantifying the amount of noise needed for differ-

ential privacy. Specifically, we will show that for strongly-convex learning

tasks, the “scale of the noise” we need is roughly only Od,ε(1/n) where n is

the training set size (the big-O notation hides a constant that depends on

the number of features d, and the DP parameter ε.). This means that as

training set size increases, the noise we need vanishes to zero for a fixed

model and ε-DP. By contrast, for the functional mechanism, the “scale of

the noise” isOd,ε(1). The following two lemmas are due to Shalev-Shwartz

et al. Shalev-Shwartz et al. (2009). We include their proofs in the appendix

for completeness.

Lemma 4.3 (Exchanging Lemma). Let A be a learning rule such that A(S) =

argminwϑS(w), where ϑS(w) = LS(w) + %(w) and %(w) is a regularizer. For
any S ∼ Dn, i ∈ [n] and z′ ∼ D,

ϑS(u)−ϑS(v) ≤ `(v,z
′)− `(u,z′)
n

+
`(u,zi)− `(v,zi)

n
,

where u = A(S(i)) and v = A(S).

68

Proof. By the definition of ϑS ,

ϑS(u)−ϑS(v)

=
(
LS(i)(u) + %(u)− 1

n
`(u,z′) +

1
n
`(u,zi)

)
−
(
LS(i)(v) + %(v)− 1

n
`(v,z′) +

1
n
`(v,zi)

)
= ϑS(i)(u)−ϑS(i)(v) +

`(v,z′)− `(u,z′)
n

+
`(u,zi)− `(v,zi)

n
.

Since u minimizes ϑS(i) so ϑS(i)(u)−ϑS(i)(v) ≤ 0, so

ϑS(u)−ϑS(v) ≤ `(v,z
′)− `(u,z′)
n

+
`(u,zi)− `(v,zi)

n

completing the proof.

Intuitively, this lemma concerns about the behavior of a learning ruleA

on neighboring training sets. A is a regularized learning rule: Its objective

function is in the form of empirical risk LS(w) plus regularization error

%(w) (%(·) is called a regularizer). More specifically, this lemma upper

bounds the difference between the objective values of u and v, that is ϑS(u)

and ϑS(v), in terms of instance losses on the specific two instances that

get exchanged.

Recall that our goal is to upper bound ‖u − v‖. The following lemma

accomplishes this task by upper bounding the norm of the difference by

the difference of the objective values of u and v.

Lemma 4.4. Let A be a rule where A(S) = argminwϑS(w) and ϑS(w) is λ-
strongly convex in w. Then for any S ∼ Dn, i ∈ [n] and z′ ∼ D, λ2 ‖u − v‖

2 ≤
ϑS(u)−ϑS(v), where u = A(S(i)), v = A(S).

69

Proof. We have that for any α ∈ (0,1),

ϑS(v) ≤ ϑS(αv + (1−α)u)

≤ αϑS(v) + (1−α)ϑS(u)− λ
2
α(1−α)‖v −u‖2

where the first inequality is because v is the minimizer of ϑS and the

second inequality is by the definition of λ-strong convexity. By elementary

algebra, this give that λ2α‖v −u‖
2 ≤ ϑS(u)−ϑS(v). Tending α to 1 gives the

claim.

To see this Lemma, we note that v is a minimizer of ϑS by the definition

of the learning rule. Therefore by the definition of strong convexity, we

have that for any α > 0,

ϑS(v) ≤ ϑS((1−α)v +αu)

≤ αϑ(v) + (1−α)ϑ(u)− λ
2
α(1−α)‖u − v‖2

The lemma is then proved by rearranging and tending α to 1. Intuitively,

this lemma says that as long as the objective function ϑS(w) of A is good

(that is, strongly convex), then one can upper bound the difference be-

tween u and v in norm by the difference between the objective values of u

and v. Combining these two lemmas, we can prove the following main

theorem in this section.

Theorem 4.5. Let A be a learning rule with a λ-strongly convex objective loss
function ϑS(w) = LS(w) + %(w) where %(w) is a regularizer. Assume further
that for any z ∈ Z, `(·, z) is ρ-Lipschitz. Then A is 4ρ

λn `2-RO stable.

Proof. Let u = A(S(i)), v = A(S). By Lemma 4.4,

λ
2
‖u − v‖2 ≤ ϑS(u)−ϑS(v) (1)

70

By Lemma 4.3,

ϑS(u)−ϑS(v) ≤ `(v,z
′)− `(u,z′)
n

+
`(u,zi)− `(v,zi)

n
(2)

Now because `(·, z) is ρ-Lipschitz, we have that `(v,z′)− `(u,z′) ≤ ρ‖v −u‖,
and `(u,zi)− `(v,zi) ≤ ρ‖u − v‖. Plugging these two inequalities to (2), we

have that ϑS(u)−ϑS(v) ≤ 2ρ
n ‖u − v‖. Plugging this to (1) and rearranging

completes the proof.

This theorem says that if both the instance loss function and the objective
function are well behaved (` is ρ-Lipschitz and ϑ is strongly convex), then

the learning rule A is roughly (1/n)-norm stable (in other words, the

sensitivity is 1/n, which vanishes to 0 as training set size n grows). In the

case when ` is already λ-strongly convex, we do not need a regularizer

so one can set %(w) = 0, hence a natural algorithm to ensure differential

privacy in this case is to directly perturb the empirical risk minimizer

with noise calibrated to its norm stability. Our discussion so far thus leads

to Algorithm 5

Algorithm 5 Output Perturbation for strongly-convex loss function:
`(w,z) is λ-strongly convex and ρ-Lipschitz in w, for every z ∈ Z.

Input: Privacy budget: εp > 0. Training set S = {(xi , yi)}ni=1.
1: function OutputPerturbationStronglyConvex(S,εp)
2: Solve the empirical risk minimization w̄ = argminwLS(w).
3: Draw a noise vector κ ∈Rd according to a distribution with density

function p(κ) ∝ exp
(
−λnεp‖κ‖24ρ

)
.

4: return w̄+κ

Theorem 4.6. Let (Z,H, `) be a learning problem where ` is λ-strongly convex
and ρ-Lipschitz. Then Algorithm 5 is ε-differentially private.

To see this, we note that LS(w) is λ-strongly convex because ` is, so

we can set the objective function ϑ(w) = LS(w). ϑ(w) is λ-strongly convex

71

and ρ-Lipschitz, so Theorem 4.5 bounds its `2-norm stability. The proof

is then completed by plugging the stability bound into Theorem 2.17.

If the loss function is only convex (instead of being strongly convex),

then the idea is to use a strongly convex regularizer to make the objective

function strongly convex. Specifically, we use the Tikhonov regularizer

%(w) = λ‖w‖2/2 (indeed, any strongly convex regularizer applies). This

gives Algorithm 6.

Algorithm 6 Output Perturbation for general-convex loss function: `(w,z)
is convex and ρ-Lipschitz in w, for every z ∈ Z.

Input: Privacy budget: εp > 0. Regularization parameter: λ > 0. Bound-
edness parameter: R > 0. Training data: S = {(xi , yi)}ni=1.

1: function OutputPerturbationConvex(S,λ,εp,R)
2: Solve the regularized empirical risk minimization problem w̄ =

argmin‖w‖≤R
(
LS(w) + λ

2 ‖w‖
2
)
.

3: Draw a noise vector κ ∈ R
d according to a distribution where

p(κ) ∝ exp
(
−λnεp‖κ‖24(ρ+λR)

)
.

4: return w̄+κ

Theorem 4.7. Let (Z,H, `) be a learning problem where ` is convex and ρ-
Lipschitz. Suppose further that the hypothesis space is H is R-bounded. Then
Algorithm 6 is ε-differentially private.

The easiest way to see this theorem is to define a new loss function
¯̀(w,z) = `(w,z) + (λ‖w‖2)/2. Then ¯̀ is λ-strongly convex and (ρ + λR)-

Lipschitz overH, and the theorem directly follows from Theorem 4.6. We

remark that Algorithm 6 and Theorem 4.7 can be strengthened based on

Theorem 4.5 and specifically do not rely on the boundedness condition.

However, since our analysis of generalization error for this case (in the

next section) critically relies on the boundedness condition, the algorithm

and its privacy guarantee are stated in the current form.

72

Generalization Error

Until now, we have only talked about ensuring differential privacy with

a small amount of noise, and have not said anything about whether this

small amount of noise will lead to a model with “good utility”, which is

usually measured by generalization error in learning theory. We accomplish

this in this section. At a high level, we will show that for strongly convex

learning tasks, output perturbation produces hypotheses that are roughly

(1/n)-away from the optimal. For general convex learning tasks, this

degrades to roughly 1/
√
n.

For notational convenience, throughout this section we let A denote

a deterministic learning mechanism, and Ã be its output perturbation

counterpart. We begin with a general lemma.

Lemma 4.8. Suppose that for any z ∼ D, `(w,z) is ρ-Lipschitz in w. If with
probability at least 1−γ over w ∼ Ã(S),

‖w −A(S)‖2 ≤ κ(n,γ),4

then with probability at least 1−γ over w ∼ Ã(S),

|LD(w)−LD(A(S))| ≤ ρκ(n,γ).

Proof. We have

|LD(w)−LD(A(S))| = | E
z∼D

[`(w,z)− `(A(S), z)]|

≤ E

z∼D
[|`(w,z)− `(A(S), z)|]

For every z ∈ Z, `(·, z) is ρ-Lipschitz, so |`(w,z)− `(A(S), z)| ≤ ρ‖w −A(S)‖2.
4We abuse the notation κ to remind readers that this quantity is related to the noise

vector.

73

Therefore

E

z∼D
[|`(w,z)− `(A(S), z)|] ≤ ρ‖w −A(S)‖2.

The proof is complete by observing that with probability at least 1 − γ
over w ∼ Ã(S), ‖w −A(S)‖2 ≤ κ(n,γ).

This lemma translates the closeness between two hypotheses in norm
to the closeness in generalization error. More specifically, note that the

randomized learning rule Ã induces a distribution Ã(S) over the hypothesis

space. This lemma says as long as a hypothesis sampled from Ã(S) is close

to A(S) (a single hypothesis) in norm, then these two hypotheses are close

in their generalization error. Note that this closeness is controlled by the

Lipschitz constant of the instance loss function `.

Combing this lemma with Theorem 4.5 from the last section, which

bounds the norm stability, we have the following general theorem upper

bounding the generalization error of our method.

Theorem 4.9. Let (H,Z,`) be a learning problem that is agnostically learnable
by a deterministic learning algorithm A with rate ε(n,δ). Suppose that `(w,z)
is ρ-Lipschitz in w for any z ∈ Z. Let D be a distribution over Z. Finally,
suppose that for any S ∼ Dn, with probability at least 1−γ over w ∼ Ã(S),

‖w −A(S)‖2 ≤ κ(n,γ).

Then with probability at least 1− δ −γ over S ∼ Dn and w ∼ Ã(S), we have
LD(w)−L∗D ≤ ε(n,δ) + ρκ(n,γ).

Proof. For any S ∼ Dn, we have that LD(w) − L∗D =
(
LD(w) − LD(A(S))

)
+(

LD(A(S))−L∗D
)
. For LD(A(S))−L∗D, we know that PrS∼Dn

[
LD(A(S))−L∗D >

ε(n,δ)
]
< δ. Further, for every S ∼ Dn, from Lemma 4.8, Prw∼Ã(S)

[
LD(w)−

LD(A(S)) > ρκ(n,γ)
]
< γ . The proof is complete by a union bound.

74

In the rest of this section we give concrete bounds for different types

of instance loss function.

Strongly Convex Loss. We now bound generalization error of our method

for the case where the instance loss function ` is strongly convex. We will

use the following theorem from stability theory:

Theorem 4.10 (Theorem 6, Shalev-Shwartz et al. (2009)). Consider a learn-
ing problem such that `(w,z) is λ-strongly convex and ρ-Lipschitz in w. Then
for any distribution D over Z and any δ > 0, with probability at least 1− δ
over S ∼ Dn,

LD(ERM(S))−L∗D ≤
4ρ2

δλn
.

where ERM(S) is the empirical risk minimizer, i.e. ERM(S) = argminw∈HLS(w).

We are ready to prove the following theorem on generalization error.

Our bound matches the bound obtained by Bassily et al. for the same

setting (Theorem F.2, Bassily et al. (2014)).

Theorem 4.11. Consider a learning problem such that `(w,z) is λ-strongly
convex and ρ-Lipschitz in w. Let εp > 0 be a privacy parameter for differential
privacy. Let Ã denote Algorithm 5. Then for any δ ∈ (0,1), with probability
1− δ over S ∼ Dn and w ∼ Ã(S),

LD(w)−L∗D ≤O
(ρ2d ln(d/δ)

λnδεp

)
.

Proof. Let A denote the rule of empirical risk minimization, and Ã be its

output-perturbation counter-part which ensures εp-differential privacy.

Then by Theorem 4.5, and corollary 2.18, with probability at least 1−γ
over w ∼ Ã(S), ‖w −A(S)‖2 ≤

4d ln(d/γ)ρ
λnεp

.

75

Together with Theorem 4.10, it follows that with probability at least

1− δ′ −γ over S ∼ Dn and w ∼ Ã(S),

LD(w)−L∗D ≤
4ρ2

δ′λn
+

4d ln(d/γ)ρ2

λnεp
.

Put δ′ = γ = δ/2, thus with probability at least 1− δ,

LD(w)−L∗D ≤
4ρ2

λn

(2
δ

+
4d ln(2d/δ)

εp

)
.

Asymptotically this is O
(
ρ2d ln(d/δ)
λnδεp

)
. The proof is complete.

Basically, this theorem says that if the instance loss function is strongly

convex, then with high probability, the generalization error of a hypothesis

sampled using our method is only roughly 1/n-away from the “optimal”

(L∗D).

General Convex Loss. We now consider the general case where ` is only

convex. We have the following theorem on the generalization error, which

matches the bound obtained in Bassily et al. (2014) (Theorem F.3),

Theorem 4.12. Consider a convex, ρ-Lipschitz learning problem that is also
R-bounded. Let εp > 0 be a privacy parameter for differential privacy. Let Ã
denote Algorithm 6. Then for any δ ∈ (0,1), with probability 1−δ over S ∼ Dn

and w ∼ Ã(S),

LD(w)−L∗D ≤O
ρR√d ln(d/δ)√

nδεp

 .
Proof. Let ¯̀ be defined as ¯̀(w,z) = `(w,z) + λ

2 ‖w‖
2. ¯̀ is λ-strongly convex

and (ρ+λR)-Lipschitz. Let L̄S and L̄D be the empirical loss and true loss

functions with respect to ¯̀. Note that for any w ∈ H, L̄D(w) = LD(w) +
λ
2 ‖w‖

2.

76

By Theorem 4.11, there is an εp-differentially private mechanism Ã

such that with probability 1− δ over S ∼ Dn and w ∼ Ã(S),

L̄D(w)− L̄∗D ≤O
((ρ+λR)2d ln(d/δ)

λnδεp

)
(1)

Let w̄ ∈ H such that L̄D(w̄) = L̄∗D and w∗ ∈ H such that L∗D = LD(w∗). Be-

cause w̄ is the minimizer of L̄D(·), so

LD(w∗) +
λ
2
‖w∗‖2 ≥ LD(w̄) +

λ
2
‖w̄‖2 (2)

Combining (1) and (2) we have

LD(w)−L∗D ≤O
((ρ+λR)2d ln(d/δ)

λnδεp

)
+
λ
2

(
‖w∗‖2 − ‖w‖2

)
≤O

((ρ+λR)2d ln(d/δ)
λnδεp

)
+
λR2

2

≤O
(

2ρRd ln(d/δ)
nδεp

+
ρ2d ln(d/δ)
λnδεp

+λR2
)

where the second inequality is because the hypothesis space is R-bounded.

Putting λ = ρ
R

√
d ln(d/δ)
nδεp

gives the claimed bound.

Note that for convex loss functions (instead of strongly convex ones),

we are only roughly 1/
√
n-away from the optimal.

We notice that regularization plays a vital role in this theoretical guar-

antee. Indeed, the key to prove Theorem 4.12 is the use of the Tikhonov

regularizer (λ‖w‖2/2) to gain stability. By contrast, regularization is only

used as a heuristic in the analysis of the functional mechanism Zhang

et al. (2012).

77

4.3 On Applications and Previous Work

We now give concrete applications of our results. Due to lack of space, we

only describe two important examples, Support Vector Machine (SVM)

and Logistic Regression. As we will see, our analysis enables us to train

an SVM without approximating the loss function using a smooth loss

function that gives higher or point-wise equal loss.

Support Vector Machine (SVM). In SVM we use the hinge loss function.

Specifically, given hypothesis space H ⊆ R
d , feature space X ⊆ R

d , and

output space Y = {0,1}, then for (x,y) ∈ X ×Y , the hinge loss is defined as

`hinge(w,x,y) = max
{
0, y(1− 〈w,x〉)

}
.

In the common setting whereX is scaled to the unit sphere, it is straightfor-

ward to verify that `hinge is convex 1-Lipschitz. Therefore our Algorithm 6

and Theorem 4.12 directly apply to provide differential privacy with a

small generalization error. We note that, however, hinge loss is not differ-

entiable. Therefore Chaudhuri et al.’s analysis for output perturbation

does not directly apply. Indeed, in order to use their method, they need to

use a smooth loss function to approximate the hinge loss by giving higher

or equal point-wise loss.

Logistic Regression. For Logistic Regression we have H ⊆ R
d , X ⊆ R

d

and Y = {±1}. Then for y ∈ Y and x ∈ X, the loss of w on (x,y) is defined

to be

`log(w,x,y) = log
(
1 + e−y〈w,x〉

)
.

It is not hard to verify that `log is convex and differentiable with bounded

derivatives. Therefore both our analysis and Chaudhuri et al.’s analysis

directly apply.

More Comparison with Chaudhuri et al. Chaudhuri et al. (2011). We

note that Chaudhuri et al. Chaudhuri et al. (2011) have given an output

78

perturbation mechanism that is essentially the same as our Algorithm 6.

Moreover, they give an objective perturbation algorithm. The main differ-

ence is that the noise is added to the objective function, instead of the

output. We refer interested readers to their work for more details.

Our work differs in analysis and applicability. Specifically, to get their

claimed generalization bounds Chaudhuri et al. require differentiability

and smoothness for their output perturbation, and require twice differ-

entiability with bounded derivatives for their objective perturbation (see

Theorem 6 and Theorem 9 in Chaudhuri et al. (2011)). Our analysis

removes all these differentiability conditions, and demonstrates that out-
put perturbation works well for all convex-Lipschitz-bounded learning

problems. This is by far the largest class of convex learning problems that

are known to be learnable (see Shalev-Shwartz and Ben-David (2014)).

More Comparison with Bassily et al. Bassily et al. (2014). We observe

that Bassily et al. (2014); Chaudhuri et al. (2011), as well as our work,

are all based on regularized learning using the Tikhonov regularizer

(λ‖w‖2/2, where λ is the regularization parameter). For fixed λ we note

that Bassily et al. Bassily et al. (2014) achieve better training error (the

generalization error remains the same). However, their mechanism is

substantially more complicated. Specifically, their mechanism is the

exponential mechanism with a sophisticated sampling procedure to give

polynomial running time. We note that there have also been practical

concerns in implementing the exponential mechanism Hardt (2015). Also,

the sampling procedure Applegate and Kannan (1991) runs in time O(n3),

where n is the training set size. This can be prohibitive for reasonably large

data sets. For these two reasons, in this chapter we will not empirically

compare with Bassily et al..

79

4.4 Empirical Study

In this section we empirically evaluate our method. Our main empirical

question is the following:

“How does the accuracy of models produced using our mechanisms compare to
the functional mechanism?”

To answer this question, we note that as the training set size increases the

magnitude of noise using our method vanishes to 0, while the functional

mechanism always requires constant noise. Thus for sufficiently large

training set, our method is guaranteed (theoretically) to be better than the

functional mechanism. However, it is still possible that for small datasets

the functional mechanism can be better than ours.

Therefore, in our empirical study we choose to evaluate on on both
small and medium-sized datasets. For small datasets, we use the diabetes5,

which only has 768 training samples. For medium-sized datasets, we use

the same Warfarin dataset that is used by Fredrikson et al. Fredrikson

et al. (2014), which has about 3000 patient records. We build logistic

regression models to do binary classification on the diabetes dataset and

build linear regression models to predict dosage on the Warfarin dataset.

A Summary. We find that our mechanisms provided significantly better

accuracy than the functional mechanism for a given ε setting. Specifically,

for logistic regression, we obtain 60%− 80% classification accuracy for ε

ranging from 0.1 to 4 (the baseline has 80% accuracy), while the functional

mechanism only gives 40%− 60% accuracy (note that a random guessing

classifier gives 50% accuracy in expectation). For linear regression, we

obtain accurate models with ε-DP even for ε = 0.1, whereas the functional

mechanism does not provide comparable models until ε ≥ 5.
5We use a preprocssed version of the diabetes dataset (https://www.csie.ntu.edu.

tw/˜cjlin/libsvmtools/datasets/binary.html#diabetes). The original dataset can
be found at UCI (https://archive.ics.uci.edu/ml/datasets/Diabetes).

 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#diabetes
 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#diabetes
https://archive.ics.uci.edu/ml/datasets/Diabetes

80

The rest of the section is organized as follows. We first describe the

experimental methodology in Section 4.4. Then we present our results

on model accuracy in Section 4.4. Finally, in Section 4.4 we consider

the relationship between DP and model inversion attacks, a new privacy

attack proposed in Fredrikson et al. Fredrikson et al. (2014).

Experimental Methodology

We now give more details on our experimental methodology. This section

has four parts. We first describe algorithms considered in our experiments

and how to set parameters for them. Then we describe the datasets we

use. Finally, we give more details on how we evaluate the algorithms.

We consider two goals: (i) model accuracy, for both linear regression

and logistic regression; (ii) model inversion attacks, a new privacy attack

proposed in Fredrikson et al. (2014), for linear regression.

We now describe algorithms considered in our experiments, To this

end, because we use L2-regularization, we have to restrict the hypothesis

space to obtain learnability. For both logistic regression and linear regres-

sion, we restrict the hypothesis space to be a ball of radius R centered at

the origin. Therefore we have to set two parameters, λ and R, for these

two learning tasks.

Oracle Output Perturbation. This is the idealized version of the output

perturbation mechanism, where we exhaustively search for the best pa-

rameters using the training data and then use them in as if they were

“constants”. We consider this variant because it shows the best possible

result one can obtain using output perturbation.

We search R exhaustively within the space {0.25,0.5,1,2}. To search for

a good λ, we consider an arithmetic progression starting at initial value

(d/nε′p)1/2 and ending at (d/nε∗p)1/2, where ε′p = 100 and ε∗p = 0.1. The start

and end values are determined by a computation based on our proof of

81

Theorem 4.12.

Data-Independent Output Perturbation. Based on the proof of Theo-

rem 4.12, We determine λ,R through a computation so that they are

independent of the training data.

We put R = 1. This is because we scale the data to the unit sphere, and

the coefficients of the linear regression model are all small when trained

over the scaled data. For λ, the proof of Theorem 4.12 indicates that λ is

approximately
√
d/nεp.

Privately-Tuned Output/Objective Perturbation. Chaudhuri et al. Chaud-

huri et al. (2011) used private parameter tuning to pick data-dependent

parameters for both of their output/objective perturbation. Fortunately,

the private tuning algorithm only makes black-box use of the output/ob-

jective perturbation. Algorithm 7 describes the private-tuning framework.

Given εp, the tuning algorithm ensures εp-DP.

LetR be a set of l choices ofR and Λ be a set of k choices of λ. Letm = l·
k, and suppose the pairs of parameters can be listed as {(R1,λ1), . . . , (Rm,λm)}.
The more settings of parameters to try, larger the m is, and so we have

smaller chunks for training, thus more entropy in the probability in pick-

ing the final hypothesis. Therefore, we want to have a small set of good

parameters. For Λ, instead of using an arithmetic progression as in the

oracle variant, we now use a geometric progression of ratio 2. For R, we

try two sets R1 = {.25, .5,1}, and R2 = {.5,1,2}.

Datasets. As we mentioned before, we consider two datasets: diabetes,

a small dataset from the UCI repository, and the Warfarin dataset, a

medium-sized dataset considered in Fredrikson et al. Fredrikson et al.

(2014). For the Warfarin dataset, the data was collected by the Inter-

national Warfarin Pharmacogenetics Consortium (IWPC), and contains

information pertaining to the age, height, weight, race, partial medical

history, and two genomic SNPs: VKORC1 and CYP2C9. The outcome

82

Algorithm 7 Parameter Tuning Algorithm: it accesses a privacy-
preserving training algorithm as a black box.

Input: Privacy budget: εp > 0. Training data: S = {(xi , yi)}ni=1, where ‖xi‖ ≤
1, |yi | ≤ 1. Parameter space: R = {R1, . . . ,Rl}, where max1≤i≤lRi ≤ R,
Λ = {λ1, . . . ,λk}.

1: function ParameterTuning(S,R,Λ)
2: R×Λ← (Ri ,λi)}mi=1
3: Divide the training data into m+ 1 chunks, S1, . . . ,Sm,S

′. S1, . . . ,Sm
are used for training, and S ′ is used for validation.

4: For each i = 1,2, . . . ,m, apply a privacy-preserving algorithm to
train wi (for example output or objective perturbation) with parame-
ters εp,λi ,Ri ,Si . Evaluate wi on S ′ to get utility uS ′ (wi) = −LS ′ (wi).

5: Pick a wi in {w1, . . . ,wm} using the exponential mechanism with
privacy budget εp and utility function uS ′ (wi). Note that the sensitivity
of u is

∆(u) = max
w∈H

max
S,i,z′
|uS(w)−uS(i)(w)| ≤ R2.

Thus this amounts to sampling wi with probability

p(wi) ∝ exp
(
−
LS ′ (wi)εp

2R2

)
.

variable corresponds to the stable therepeutic dose of warfarin, defined

as the steady-state dose that led to stable anticoagulation levels. At the

time of collection, this was the most expansive database of information

relevant to pharmacogenomic warfarin dosing. We refer the reader to

the original IWPC paper International Warfarin Pharmacogenetic Consor-

tium (2009) and the paper by Fredrikson et al. Fredrikson et al. (2014) for

more information about the data and how it was preprocessed.

Model Accuracy. For both diabetes and Warfarin datasets we consider

the question of model accuracy. Specifically, we build logistic regression

models to classify whether a patient has diabetes or not. For the Warfarin

dataset, we examine linear warfarin dosing models trained on the data.

83

For binary classification, we measure the model accuracy by measuring its

classification accuracy. For linear regression, we consider the mean squared
error of the regression.

Model Inversion Attacks. While our main empirical question is about

model accuracy, we note that for the Warfarin dataset and linear regression

models, Fredrikson et al. Fredrikson et al. (2014) also conducted a detailed

evaluation on model inversion attacks (MI attacks), a new kind of privacy

attacks, on the resulting model. In short, Fredrikson et al. used a model

inversion algorithm to predict VKORC1 (a genetic feature) for each patient

based on the Warfarin dosage and partial information of other features.

Since we improve the tradeoff between differential privacy and utility, it

is thus a sensible goal to consider the impact of the improved tradeoff on

MI attacks.

Model Accuracy

0.1 0.2 0.5 1.0 2.0 4.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ε

C
la

ss
ifi

c
a
ti

o
n

A
c
c
u

ra
c
y

Baseline
Data-Independent

Functional

Figure 4.1: Classification accuracy on the diabetes dataset (768 samples,
8 features). It is a binary classification task. We consider the classification
accuracy (#correctly classified samples)/(#samples in the test set). Thus,
larger accuracy is better. In this figure, the baseline has accuracy 80%.
We range the privacy budget ε in {0.1,0.2,0.5,1.0,2.0,4.0}. Our method
outperforms the functional mechanism significantly – with accuracy from
60%− 80%, while the functional mechanism only gives 40%− 60%. Note
that a random guessing algorithm gives 50% accuracy in expectation.

Diabetes Dataset. Figure 4.1 gives the results. For the diabetes dataset,

84

we only report the results for the data independent output perturbation

algorithm, because all other private variants have very similar perfor-

mance. (except with the functional mechanism). Our private algorithm

gives significantly better accuracy than the functional mechanism, for all

ε considered.

Warfarin Dataset. Figure 4.2 compares Functional Mechanism with all

the private output perturbation mechanisms, which includes Tuned Out-

put Perturbation (Out), Data-Independent Output Perturbation (Data

Independent), and Oracle Output Perturbation (Oracle). We also include

the model accuracy of the non-private algorithm (Non-Private). We ob-

serve that all the output perturbation give much better model accuracy

compared to the functional mechanism, especially for small ε. Specif-

ically, Tuned Output Perturbation obtains accurate models at ε = 0.3.

Data-Independent and the Oracle Mechanisms give much the same model

accuracy, and provide accurate models even for ε = 0.1. In particular,

the accuracy is very close to the models produced by the non-private

algorithm.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 5 10 100

1

5

10

15

20

25

ε

M
S
E

Out R1

Out R2

Data-Independent
Oracle

Functional
Non-Private

Figure 4.2: Model Accuracy: compare the functional mechanism with
our output perturbation method, as well as the non-private mechanism.
R1 stands for the Private-Tuned mechanism where we try the bounded
hypothesis space with radius R in {.25, .5,1}. R2 stands for the same
mechanism with radius in {.5,1,2}. Out indicates Privately Tuned Output
Perturbation methods. Oracle (Data-Independent) stands for the Oracle
(Data-Independent) Output Perturbation.

85

Figure 4.3 further compares the performance of Data-Independent

and Oracle mechanisms and demonstrate their closeness. For the entire

parameter range considered, the maximum MSE gap we observed is only

0.1. Figure 4.4 further compares the risk of mortality, hemorrhage, and

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 5 10 100
1

1.5

2

2.5

ε

M
S
E

Data-Independent
Oracle

Figure 4.3: Model Accuracy: Further comparison between Data-
Independent Output Perturbation and Oracle Output Perturbation. The
maximum MSE gap we observed is only 0.1.

stroke using Functional Mechanism, Tuned Output Perturbation and Data-

Independent Output Perturbation. unsurprisingly, Data-Independent

Output Perturbation gives the best result, and in particular much smaller

risk than Functional Mechanism.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.2

1.4

ε

R
R

(m
o
rt
a
li
ty

)

Out
Data-Independent

Functional

(a) Mortality

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.2

1.4

ε

R
R

(h
e
m
o
rr
h
a
g
e
)

Out
Data-Independent

Functional

(b) Bleeding

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.2

1.4

ε

R
R

(s
tr
o
k
e
)

Out
Data-Independent

Functional

(c) Stroke

Figure 4.4: We estimate the risk of mortality, hemorrhage, and stroke
using the approach described by Fredrikson et al.

Finally, we also compare with two other private algorithms.

Projected Histogram. We notice that in the previous work of Fredrikson

et al. Fredrikson et al. (2014), they have implemented private projected

histogram mechanism and compared it with the functional mechanism

86

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 5 10 100
1

1.5

2

2.5

ε
M

S
E

Obj R1

Obj R2

Data-Independent
Oracle

Figure 4.5: Model Accuracy: Objective Perturbation, Data-Independent
Output Perturbation and Oracle Output Perturbation. R1 stands for the
Private-Tuned mechanism where we try the bounded hypothesis space
with radius R in {.25, .5,1}. R2 stands for the same mechanism with radius
in {.5,1,2}.

on linear regression. Specifically, as Figure 6 (Section 5.2) of their paper

shows, the projected-histogram algorithm indeed has similar model accu-

racy compared to the functional mechanism, which is much worse than

our Data-Independent algorithm (of which the accuracy is close to that of

the non-private algorithm).

Objective Perturbation. We have so far mainly compared with the func-

tion mechanism, which we believe is the most important task, because

the functional mechanism has become the recognized state of the art for

training regression models and has been adopted by many research teams,

including Aono et al. (2015); Wang et al. (2015); Winslett et al. (2012).

On the other hand, we notice that under very restricted conditions, it is

known that Chaudhuri et al.’s objective perturbation method Chaudhuri

et al. (2011) can provide very good model accuracy. Interestingly, because

we impose boundedness condition for linear regression, the technical con-

ditions of objective perturbation are satisfied. Therefore we also compare

it with our method. Encouragingly and perhaps somewhat surprisingly,

while our method is much more widely applicable (see discussion in

Section 4.3), our experiments show that our general algorithm performs

as well as objective perturbation. Specifically, Figure 4.5 compares the

87

model accuracy of these three methods, and the maximal gap we observed

is only 0.1!

Model Inversion

Improving model utility for a given ε is a theme shared by nearly all pre-

vious work on differential privacy. In the final part of our empirical study,

we study the impact of the improved DP-utility tradeoff on MI attacks, a

new kind of privacy attacks first raised by Fredrikson et al. Fredrikson

et al. (2014). This is a sensible goal, because utility has no direct bearing

on the privacy guarantee provided by differential-privacy—two models

can differ significantly on the level of utility the provide, while still con-

ferring the same level of differential privacy. However, we show that MI

is orthogonal to differential privacy in this sense, because the improved

utility offered by our mechanisms leads to more successful MI attacks.

Better DP mechanisms, more effective MI attacks. Figure 4.6 compares

MI accuracy of all the private mechanisms. For all these mechanisms, we

see that mechanisms with better DP-utility tradeoff also has higher MI

accuracy. Specifically, For Oracle Output Perturbation at ε = 0.2, we see a

significant increase in MI accuracy: 45% for Oracle compared to 35% for

the functional mechanism. Meanwhile, the utility of our mechanism is

much better, with mean squared error 1.82 compared to the functional

mechanism’s 22.57. This phenomenon holds for larger ε, although the

magnitude of the differences gradually shrink.

Figure 4.7 further demonstrates that, similar to their model accuracy,

Data-Independent and Oracle Output Perturbation have very similar

behavior on model invertibility (note that they both provide similar model

accuracy that is better than other methods).

Comparison with Other Private Mechanisms. For MI we also compare

our method with projected-histogram algorithm and objective pertur-

88

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 5 10 100
0.3

0.35

0.4

0.45

0.5

0.55

0.6

ε

M
I-
a
c
c
u
ra

c
y

Out R1

Out R2

Data-Independent
Oracle

Functional

Figure 4.6: MI attack: Output Perturbation vs. Functional Mechanism.
The x-axis is ε. The y-axis is the accuracy of MI attack. MI attacks become
more effective for all three variants. For Oracle Output Perturbation and
Functional Mechanism at ε = .2, the MI attack accuracy for the oracle
mechanism is 45%, while is only 35% for the functional mechanism.
Data-Independent and Oracle Output Perturbation are similar.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 5 10 100
0.3

0.35

0.4

0.45

0.5

0.55

0.6

ε

M
I-
a
c
c
u
ra

c
y

Data-Independent
Oracle

Figure 4.7: Model Invertibility: Data-Independent and Oracle Output
Perturbation. The model inversion accuracy of these two algorithms are
also very close with each other.

bation. Specifically, We notice that in the previous work of Fredrikson

et al. Fredrikson et al. (2014), they have demonstrated that projected-

histogram algorithm actually leaks more information and produces mod-

els with higher MI accuracy than the functional mechanism (see the

discussion under the head “Private Histograms vs. Linear Regression”

in Section 4 of their paper). For Objective Perturbation we find again that

its MI accuracy is almost the same as our Data-Independent and Oracle

Output Perturbation. This is not surprising because they have very close

model accuracy.

For a fixed mechanism, better utility gives more effective MI attacks.

89

For a fixed mechanism, we demonstrate that MI attacks get more effective

as utility increases with the availability of more training data. Figure 4.8

10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

6

% Training Set

M
S
E

ε = 0.5
ε = 1

(a) Model Accuracy

10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

0.6

% Training Set

M
I-
a
c
c
u
ra

c
y

ε = 0.5
ε = 1

(b) Model Invertibility

Figure 4.8: Privately-Tuned Output Perturbation with increasingly larger
training sets. The x-axis is the size of training chunks, and the y-axis
is MSE. We use the following experimental method: The entire data set
gets randomly permuted in the beginning. The data is split again into 25
chunks, with the first 24 for training and the last one for validation. For
each of the training chunks, a fraction of the training items is sampled
at rate r. We then train the model using the data with Tuned Output
Perturbation and evaluate their utility and MI attack accuracy. This
experiment is repeated 100 time for r = 10%,20%, . . . ,100%.

shows the results for Tuned Output Perturbation. For εp = 0.5, the mean

square error drops from 5.05 (with r = 10% of available training data) to

2.9 (r = 90%), while the MI attack accuracy increases from 36% (r = 10%)

to 40% (r = 90%).

A Theoretical Analysis. At first sight the above two phenomena may

seem somewhat peculiar. If MI attack is considered as a privacy concern,

then we have empirically observed that some privacy concern becomes

“worse”, while differential privacy gets “better.”

There is no contradiction here. Indeed, it suffices to observe that DP

is a property of the learning “process”, while MI attack is on the “result”

of the process. It is thus valid that the process satisfies a strong privacy

guarantee, while the result has some other concerns. In the following,

90

we give a “lower bound” result, which shows that, as long as the optimal

solution of the learning problem is susceptible to MI attacks, improving

DP/utility tradeoff will give effective MI attacks “eventually.”

The intuition is as follows: Suppose that MI attack will be effective at

a hypothesis w∗ such that LD(w∗) = L∗D. That is, the MI attack is effective at

a hypothesis we want to converge to. Now, suppose that the effectiveness

of MI attack grows “monotonically” as we converge to w∗. Then, as long

as the result of a learning algorithm converges to w∗, it will gradually give

more effective MI attacks. We now give more details of this argument.

Assumptions. We make the following three assumptions on learning and

MI attack: (i) The utility of a hypothesis is measured by its generalization

error. (ii) Suppose that for w∗, LD(w∗) = L∗D, and MI attack is effective for

w∗. (iii) As |LD(w)− L∗D| gets smaller, the MI attack for w becomes more

effective.

These assumptions are natural. For (i), almost all previous work

measures utility this way. For (ii), since the ultimate goal of learning is

to converge to the best possible hypothesis, assuming MI attack will be

effective for such w∗ is natural. Finally, closeness in LD indicates that w

and w∗ are close in terms of their “functioning as a model.” Thus (iii)

holds intuitively.

Better DP Mechanisms, More Effective MI attack. For any n, let Sn de-

note a training set of size n. Suppose that A′ is an εp-differentially private

mechanism with better privacy-utility tradeoff than the output perturba-

tion mechanism A. Thus with high probability for w ∼ A′(Sn), LD(w) is

closer to L∗D than that of w sampled from A(Sn). Combined with (ii) and

(iii), we have that MI attack is more effective for w ∼ A′(Sn).

One may note that the mechanism A′ could be any differentially pri-

vate mechanism, as long as it has better DP-utility tradeoff than output per-
turbation. For example, one can use the objective perturbation mechanism

in Chaudhuri et al. (2011) for generalized linear models, or exponential

91

sampling based mechanisms in Bassily et al. (2014) if minimizing training

error is the goal.

For a Fixed Mechanism, Better DP-Utility tradeoff gives More Effective
MI attacks.. Theorem 4.5 and our discussion at the end of Section 4.2

have indicated that as n tends to the infinity, the amount of noise in-

jected for εp-differential privacy vanishes to zero. Further, Theorem 4.11

and 4.12 imply that for any convex Lipschitz learning problem, the output
perturbation mechanism converges to the optimal hypothesis w∗. Thus we

are in the situation that as n increases, the output model has less noise

yet it is closer to w∗. Therefore, by assumptions (ii) and (iii) MI attack is

more effective for larger n.

A Bayesian View Point. In a paper by Kasiviswanathan and Smith Ka-

siviswanathan and Smith (2008), the authors give a Bayesian interpreta-

tion of the semantics of differential privacy. Informally speaking, given

an arbitrary prior distribution over a collection of databases, what differ-

ential privacy guarantees is that two posteriors obtained in two worlds of

neighboring databases are indistinguishable with each other.

What about the difference between prior and posterior? The same

paper Kasiviswanathan and Smith (2008), and indeed the original paper

by Dwork and NaorDwork and Naor (2008), have pointed out that it is

impossible to bound the difference between prior and posterior under

arbitrary background knowledge. Essentially, as long as the published

information is “useful,” there exists some background knowledge that

allows an adversary to learn and significantly modify his/her prior.

Unfortunately, in MI attacks, some moderate background information

allows significant change of one’s prior. Therefore, while worsening MI

attack is certainly not what one intended, it is also of no surprise that

better differentially private mechanisms do not give better resilience

against MI attack.

92

5 a formal study of model inversion attacks

There’s no sense in being precise when you don’t even know what
you’re talking about.

— John von Neumann

In the previous chapter we saw that MI attacks are outside of the

cocoon of differential privacy. In this chapter we continue the exploration

and study MI attacks specifically. MI attacks have received attention

shortly after their discovery Fredrikson et al. (2015); Wang et al. (2015).

These work give MI-attacks in specific context and use experiments to

quantify the advantage of “knowing the model.” However, it is unclear

theoretically what properties affects the “model invertibility.” In fact,

there is even no consensus in defining what MI attacks are.

In this chapter we take a first step to fill in this gap. Specifically, we

present two methodologies to formalize MI attacks, in both black-box and

white-box settings. Then we specialize these methodologies to important

special cases, in order to isolate important factors that affect the model

invertibility.

Our main results lie in Boolean models in the black-box situation. Us-

ing powerful tools from Boolean analysis, we identify two different notions
of stability which significantly affect the model invertibility. Specifically

for black-box MI attacks where the adversary knows the model output

and precisely all other features, we show that model invertibility is char-

acterized by influence from Boolean analysis. In the case where there is

noise in the prior knowledge, we show that the invertibility is related to

stable influence in Boolean analysis. Importantly, these two notions refer to

the stability of the model output when varying a single feature. Interestingly,

our exploration in the noisy situation also unveils a phenomenon where

several “unstable features” interfere with each other and render the model

93

“stable” when little noise present. We study such phenomenon under the

name “invertibility interference.”

5.1 Introduction

Privacy concerns surrounding the release of statistical information have

received considerable attention in the past decade. The goal of statis-

tical data privacy research is to enable accurate extraction of valuable

data patterns, while preserving an individual’s privacy in the underly-

ing dataset against data privacy attacks. In general, there have been two

flavors of data privacy attacks in the literature. The first is against a

specific privacy notion, such as differential privacy Dwork et al. (2006).

Investigations of such attacks have led to lower bounds (e.g. Dwork et al.

(2015); McGregor et al. (2011)). The second kind of attack is against

attribute privacy, which is a general concept where one studies how much

distortion is needed in order to prevent an adversary from inferring sensi-

tive attributes from non-sensitive ones (for concreteness, see for example

reconstruction attacks Dinur and Nissim (2003); Kasiviswanathan et al.

(2013)). In particular, attribute privacy attacks are widely considered in

the applied data privacy literature, where scenarios such as the release of

medical information are in focus.

This chapter focuses on a specific class of attacks falling under the

second type. The class of attacks we consider relate to inferring sensitive

attributes from a released model (e.g. a machine-learning model), or

model inversion (MI) attacks. Several of these attacks have appeared in the

literature. Recently, Fredrikson et al. Fredrikson et al. (2014) explored MI

attacks in the context of personalized medicine. Specifically, Fredrikson

et al. Fredrikson et al. (2014) “invert” a publicly-released linear regression

model in order to infer sensitive genetic markers, based on the model

output (Warfarin dosage) plus several other non-sensitive attributes (e.g.,

94

height, age, weight). Interestingly, they demonstrate that knowledge of the

model output (Warfarin dosage here), or even a reasonable approximation

of it, leads to a statistically-significant increase in leakage of the sensitive

attribute. This leads to natural questions of how widely such effective and

efficient inversion attacks exist for statistical models, as well as how to

quantify the additional leakage due to accessing the model.

Recently, more instances of effective MI attacks have been discovered,

further stimulating interest in this class of attack. For example, Fredrikson

et al. (2015) considered a white-box MI attack on models used to classify

images. They demonstrated that by exploiting the additional confidence

information provided by such models, one can significantly improve

both the effectiveness and efficiency of an MI attack. Interestingly, we

note that these attacks are reminiscent of privacy attacks discussed in

the context of inverting highly compressed image features, which were

explored previously Daneshi and Guo (2011); d’Angelo et al. (2012); Kato

and Harada (2014). It is our belief, however, that if we are to develop

countermeasures against all these attacks, or even a precise explanation

of the dangers they pose, we will need to go beyond example-based

definitions and require a methodology to capture this phenomenon. We

consider this chapter to be an initial step and much work remains to be

done.

In this chapter we take a first step toward providing a formal treatment

of MI attacks. Our contributions are summarized as follows:

• We present two methodologies, which are both inspired by the “two

world” games common in cryptographic definitions. A methodology

for black-box attacks, where the adversary has oracle access to the

model, and a methodology for white-box attacks, where the adver-

sary has information about the model structure. Our methodologies

provide a “blueprint” for making these definitions precise for spe-

cific cases. Extending this to a precise general definition (such as

95

the real and the ideal world definition used in the SMC literature)

will be an interesting direction to pursue. Our methodology focuses

on machine-learning (ML) models because they have been the target

of existing MI attacks. One shortcoming of our methodology is that

we do not take into account the specific structure of the ML model

or the learning task. Again, connecting our methodology to various

notions in the ML literature (such as stability) provides an attractive

avenue for future work.

• We then specialize our methodology to important special cases,

in order to isolate important factors that affect model invertibility
(i.e. how successfully one can invert the model). Identifying these

factors is important for at least two applications. First, as a decision

procedure prior to publishing a model, estimating invertibility can

help one gauge the leakage of sensitive attributes, and thus help

in deciding which part of a model is publishable. The second is to

help in preventing MI attacks: if invertibility is low, then little noise

may be used to effectively prevent MI attacks without sacrificing too

much utility.

• For the case of models that are Boolean functions (e.g., decision

trees with attributes having finite domains), we have some concrete

results. In this case, we can leverage powerful tools from Boolean

analysis. Specifically for black-box MI attacks where the adversary

knows the model output and precisely all other features, and there

is no noise, we show that model invertibility is characterized by

influence from Boolean analysis. Unfortunately, it becomes signif-

icantly more complicated if there is noise in the prior knowledge

of the adversary. Nevertheless, we show that the invertibility is

related to stable influence in Boolean analysis. Interestingly, our

exploration in the noisy situation also unveils a phenomenon where

96

a highly invertible model quickly becomes highly non-invertible by

adding a little noise. We study such phenomenon under the name

“invertibility interference.”

• For white-box MI attacks, we study a common phenomenon where

the computation of a machine learning model is a sequential com-

position of several layers or models. Exploiting the intermediate

information communicated between these layers, even when it is

highly compressed, can give a significant advantage to the adversary.

In fact, the white-box attack described in Fredrikson et al. (2015)

exploits exactly such information where the confidence information

is the likelihood probabilities computed at an intermediate layer

of the model. We thus study how these restricted communication

channels could leak information. Interestingly, our results show,

quantitatively, that even with 1 bit of communication there could be
a significant leakage. Our results also unveil unexpected computa-

tional power of these restricted channels, which, to the best of our

knowledge, were previously unknown.

The rest of the chapter is organized as follows: Section 5.2 describes

our methodologies for black-box and white-box MI attacks. Section 5.3

and Section 5.4, specializes our general formulation to important special

cases. Finally, we discuss connections of our formulation with other

cryptographic notions in Section 5.5.

5.2 A Methodology for Formalizing MI Attacks

An essential goal of studying MI attacks is to quantify the strength of

the correlation between sensitive attributes and the output of the model.

While this goal is very intuitive, formalizing these attacks poses a chal-

lenge due to the diversity of such attacks. Moreover, as we mentioned

97

earlier, many different attacks can be viewed as “MI attacks.” This sug-

gests that it can be difficult to give a “unified” definition of MI attacks

without risking over generalization (i.e., even a lot of benign cases with

“weak correlation” will be classified as attacks). As a first attempt, our goal

is thus to abstract out important factors from existing attacks, and present

a methodology. Guided by these methodologies, later in this chapter we

identify special cases of MI attacks that lead to theoretical insights.

This section is organized as follows: We start by discussing concepts

from machine learning, which provides the background for our method-

ology. Then we discuss MI attacks in an intuitive manner. In Section 5.2

and 5.2 we present methodologies for black-box MI and white-box MI

attacks, respectively. Along the way, we discuss how our methodology cap-

tures existing attacks and can be used to model other interesting scenarios

that have not been addressed before.

Background. We formalize MI attacks in the generalized learning setting.

In the generalized learning setting, a machine learning task is represented

as a triple (Z,H,`), where Z is a sample space, H is a hypothesis space,

and ` :H ×Z 7→R is a loss function. Given a data generating distribution

D , the goal of learning is to solve the following stochastic optimization

problem:

min
h∈H

E

x∼D
[`(h,z)].

In machine learning however, D is unknown and one must find an ap-

proximate solution using a dataset S of i.i.d. samples from D .

Recall that in the supervised learning setting, Z is of the form X ×
Y where X is called a feature space and Y an output space. Further,

a hypothesis h ∈ H has to take the form X 7→ Y . On the other hand,

the generalized learning setting, as formulated above, also incorporates

unsupervised learning. For example in clustering, one maps z ∈ Z, a

collection of points, to a set of clusters.

98

MI Attacks: Scenarios and Observations. Intuitively, MI attacks are

designed to capture privacy concerns about participants in a training set,
which arise from the following scenario: An organization trains a model

over some dataset collected from a large set of individuals. After restricted

access (say under some strict access control) to the model within the
organization, now they want to release the model to the public for general

use (e.g. say by a medical-clinic that specializes in providing personalized

medicine.) We envision two mechanisms for releasing a model: release

the model as a black box so public can use it freely, or release the model as

a white box with some information about its architecture and parameters

published. The concern is that certain correlation encoded in the model

may be too strong such that a potential adversary can leverage the publicly

published model, plus additional knowledge about individuals in the

training set, to recover participants’ sensitive information. The essential

goal of studying MI attacks is to quantify the strength of such correlations
so that one can have a better understanding to what degree such concerns

matter.

Towards this goal, one thus needs to formulate a reasonable adversary

model to capture how an adversary may exploit the model. We have

the following simple observations: (1) We are interested in MI attacks

in the test phase of machine learning, where a model h has already been

trained. (2) It is necessary to have some objective for an attack, which

can be captured by some function τ that maps a sample z ∈ Z to some

range. (3) The quantification is carried over the training dataset, since the

main concern is for participants in the dataset. (4) The quantification is

supposed to compare “two worlds”, one where the adversary has access to

the model, and the other where the adversary does not. This is to capture

the fact that we want to quantify the additional risk of releasing a model.

Limitations: Next we discuss some limitations of our methodology, and

addressing these limitations provides interesting avenue for future work.

99

Our methodology focusses on one organization, so for example, our model

does not cover the following scenario: a different organization can collect

data S? similar to S and build a model h? (may be using the same learning

algorithm), which can then be used to infer sensitive information about

participants. Moreover, the results need to be interpreted on a case-by-

case basis. For example, assume that our definition with parameterization

for a specific context yields advantage of 1
N , where N is the size of the

training set S. Should we consider this an attack? This depends on the

context. We admit that our methodology does not exploit structure of

the ML task and model (e.g., perhaps looking at the loss function l). In

general, we believe that what is considered a privacy breach is highly

dependent on the context.

Black-Box MI

We now present a methodology for formalizing black-box MI attacks

where the adversary has oracle access to a model. Along the way, we

introduce notation that will be used later.

Measuring Effectiveness of An Attack. It is attractive to consider the

success of an attack on a single sample point. While this might be sensible

in some specific scenarios (for example, the adversary wants to get genetic

information about a specific individual), it does not seem to be a good

formal measure. This is because a machine learning model, in contrast

to an encryption, is supposed to communicate some information about

the sample, so in the worst case it is always possible to extract some

information about a specific individual.

On the other hand, one may attempt to measure an attack over the

data-generating distribution D , which is in the definition of a machine-

learning task. However, this leads to a complication as D is unknown in

general and so one has to impose assumptions on its structure. We choose

100

to measure an attack over the dataset used to train the model. This thus

provides a privacy loss measure for participants in the dataset. More-

over, this allows us to carry out the quantification without an additional

parameter D .

Adversaries and Their Power. We first note that a model at the test phase

is fixed, so there is no asymptotic behavior since there is no infinite family

of models. We thus model an adversary as a probabilistic algorithm with-

out limiting its computational complexity. In other words, the adversary

is all powerful. We note that other data privacy formulations, such as

differential privacy Dwork et al. (2006), also make such an assumption on

the adversarial power.

We now present a methodology for formulating black-box MI attacks

with the goal of measuring the effectiveness of these attacks. To use this

methodology as a template to generate precise definitions for specific

scenarios, one has to instantiate auxiliary information generators gen and

sgen in the methodology for attacks and simulated attacks, respectively.

Having two different generators in the two worlds allows us additional

flexibility (e.g., in the Warfarin attack the attacker in the MI-Attack world

knows some “approximation” of the Warfarin dosage.) Note that this in-

formation cannot be computed by using the oracle because the adversary

does not know all the feature values. In some cases, gen and sgen will be

the same.

Methodology 1. The starting point of an MI attack is a machine learning
problem, specified as a triple (Z,H,`). We use the following notations:

1. Γ : A training algorithm of the learning problem, which outputs a hy-
pothesis Γ (S) ∈H on an input training set S.

2. DS : A distribution over the training set S.

101

3. τ : The objective function computed by the adversary. For now, one can
view it simply as some function that maps Z to {0,1}∗.

4. gen,sgen: Auxiliary information generators. They map a pair (S,z) to
an advice string in {0,1}∗.

As we noted before there are two worlds in our methodology (the MI-attack
world) and (the simulated attack world).
The MI-attack world: This world is described by a tuple (A,gen, τ,S,DS ,Γ),
where the adversary (A) is a probabilistic oracle machine (recall that gen
generates an advice string for the adversary from (S,z)). Now the following
game is played between the Nature and the adversary A.

(1) Nature draws a sample z from DS .

(2) Nature presents ν = gen(S,z) to the adversary.

(3) Adversary outputs AΓ (S)(ν).

The gain of the game is evaluated as

gain(A,gen, τ,S,DS ,Γ) =

Pr[AΓ (S)(gen(S,z)) = τ(z)]

where the probability is taken over the randomness of z ∼DS , the randomness
of gen, and the randomness of A. In other words, the gain is the probability
that the adversary A with oracle access to the model Γ (S) and given the advice
string generated by sgen is able to “guess” τ(z).
The simulated world: is described by a tuple (A∗,sgen, τ,S,DS), where the
adversary (A?) is a non-oracle machine and sgen is the second auxiliary
information generator. The game between the Nature and A? is exactly the
same as in the MI-attack world, but A? does not have oracle access to the

102

learned model Γ (S). Similarly, the gain is defined as:

sgain(A∗,sgen, τ,S,DS) =

Pr[A∗(sgen(S,z)) = τ(z)]

where the probability is taken over the randomness of z ∼DS , the randomness
of sgen, and the randomness of A∗.
Advantage: For (τ,S,Γ), the advantage of (gen,A) over (sgen,A∗) is com-
puted as

adv(gen,A)
(sgen,A∗) = |gain(A,gen, τ,S,DS ,Γ)

− sgain(A∗,sgen, τ,S,DS)|.

Leakage: We say that Γ (S) has ε-leakage for (τ,DS) with respect to (gen,sgen,A)

if there exists an adversary A∗ such that adv(gen,A)
(sgen,A∗) ≤ ε. Finally, Γ (S) has ε-

leakage for (τ,DS) with respect to (gen,sgen) if for any probabilistic adversary
A, there exists an adversary A∗ such that adv(gen,A)

(sgen,A∗) ≤ ε.

We remark that an interesting special case is to evaluate the gain

against a uniform distribution over the training set. This case is interesting

because a uniform distribution over the training set gives an approxima-

tion of the underlying data generating distribution D , as S is i.i.d. drawn

from D . As a result, the gain against the uniform distribution over the

training set also approximately measures the strength of the correlation

for the data generating distribution.

Modeling Examples. We now discuss several examples of applying our

methodology.

Example 5.1 (Warfarin Attack Fredrikson et al. (2014)). Our first example
is the Warfarin-dosage attack in the original work of Fredrikson et al. Fredrik-
son et al. (2014). The Warfarin-dosage attack is a black-box MI attack in the

103

The MI-Attack World The Simulated World
Oracle access to Γ (a linear-regression
model).

No access to the oracle.

τ : τ(z) = xi . (the VKORC1 genetic marker) τ : τ(z) = xi .
gen: gen(S,z) = (x−i ,y,marginals of S). sgen: sgen(S,z) = (x−i ,marginals of S).
A: can access h,x−i ,marginals of S and y. A∗: can access h,x−i ,marginals of S.

Table 5.1: Warfarin-dosage Attack of Fredrikson et al. Fredrikson et al.
(2014). We describe how to set up various parameters in order to put
the attack of Fredrikson et al. (2014) in our methodology. Note that in
this formulation z takes the form of (x,y) and we feed y to the adversary
(not h(x)). This is important because in Fredrikson et al.’s case, for the
patients participating in the dataset, y does not come from model out-
put, but rather is determined by medical doctors. Thus h(x) is only an
approximation of y.

supervised learning setting. Thus Z = X ×Y and X =
∏n
i=1Xi where Xi ’s are

binary encoding of features, such as genotypes, race, etc. The attack, put in our
formalization, is summarized in Table 5.1.

Note that in this formulation z takes the form of (x,y) and we feed y to
the adversary (not h(x)). This is important because in Fredrikson et al.’s case,
for the patients participating in the dataset, y does not come from model
output, but rather is determined by medical doctors. Thus h(x) is only an
approximation of y.

Example 5.2 (Inferring Participation). A common privacy attack is to in-
fer whether an individual is in a dataset. For example, differential privacy
addresses such attacks, and uses noise to hide the participation of any indi-

vidual (so, with/without a specific individual, the adversary draws the same
conclusion with high probability.)

We note that participation attacks fit naturally into our methodology. In

104

particular, consider the following goal function τ , for z ∈ Z,

τ(z) =

1 z ∈ S,

0 otherwise.

That is, given z ∈ Z, the goal of the adversary is to decide whether z is in the
training set or not.

One may think that differential privacy is precisely the countermeasure
for this attack. However, in principle it is not, although applying differential
privacy may have certainly effect the outcome.

This is because the design of differential privacy allows learning correla-
tions, subject only to that any individual participation will not be able to
change the correlation significantly. Therefore, once the correlation is found,
one may still be able to use this correlation to infer participation of a pop-
ulation with certain accuracy. Nonetheless differential privacy ensures that
localized to any particular individual, his or her participation will not signifi-
cantly change the results of such inferences (so the guarantee here is a form of
“plausible deniability” for that particular individual). We remark that it would
be interesting to carry out this attack empirically in a real-world setting.

White-Box MI

We now move on to consider white-box MI attacks. We will now assume

that the adversary has some additional knowledge about the model struc-

ture. The question is, however, how to model this knowledge about the

structure?

We observe that machine learning models typically adopt a sequential

composition of computations. For example, in the simplest case of linear

models, one first computes a linear representation of the features, and

then applies, for example, a logistic function to make a prediction (rep-

resenting a probability in this case). As another example, in “one-vs-all”

105

multiclass logistic regression, one trains multiple binary logistic regres-

sion models, each encoding the “likelihood” of a particular class, and

then makes a final prediction based on these confidence information. As

observed in Fredrikson et al. (2015), being able to observe such intermedi-

ate information, even though they might be highly compressed compared

to the original information, can give the adversary a significant advantage

in deducing sensitive values.

We are thus motivated to consider white-box MI attacks in the partic-

ular case of sequential composition. We note that this is in sharp contrast

with attacks in cryptographic settings where the protocols typically have

a significantly more complicated composition structure (compared to

sequential composition). We start by defining machine learning models

with k layers.

Definition 5.3 (k-Layer Model). Let X be a feature space and Y1, . . . ,Yk be
k output spaces. A k-layer model M is a model where its computation can be
represented as a composition of k functions h1, . . . ,hk, where h1 : X 7→ Y1 and
hi : Yi−1 7→ Yi (2 ≤ i ≤ k). The output of hk is the output of the entire model.

We can now define white-box MI attacks. Compared to the black-box

case, the only thing changes now is that: (i) the adversary is aware of the

composition structure, and (ii) he might be able to observe intermediate

information passing between the layers. We have the following definition.

Methodology 2 (k-layer White-Box MI Attack). The methodology of white-
box MI attack is the same as the black-box one, except for two differences:

• Instead of letting the adversary A have oracle access to the model, we
feed the k-layer representation of the machine-learning model as input
to the adversary.

• The auxiliary information generators gen and sgen take an additional
parameter Γ (the learning algorithm). This allows the auxiliary infor-

106

mation generators to generate information that might depend on the
learning algorithm Γ (see Example 5.5). An important point to note is
that in the simulated world the adversary still does not have access to
the model Γ (S).

Modeling Examples. As in the black-box case, we now express existing

attacks using our methodology.

Example 5.4 (Decision Tree Fredrikson et al. (2015)). In Fredrikson et al.
(2015) the authors studied the following attack against decision trees. Not only
does the adversary know the model structure, but also he knows, for each path
of the tree, how many instances in the training set correspond to that path. In
other words, the adversary knows both the exact decision tree, as well as the
confidence information of each path (intuitively, one wants to follow the path
that more training instances follow). They show that with such confidence
information one can significantly improve attack accuracy.

Such a scenario can be captured by our methodology. The decision tree
model is directly fed as input to the adversary. For the confidence information,
the adversary can compute on its own by simulating the model on every
instance of S. The adversary can do so because he is all-powerful and has
white-box access to the model.

Example 5.5 (Neural Network Fredrikson et al. (2015)). As we mentioned
before, Fredrikson et al. (2015) also studied another attack where for a neural
network with a softmax layer (this layer encodes the probabilities corresponding
to each class), the adversary can query for probability in that layer. Again,
accessing this piece of information significantly improves attack accuracy.

This attack can also be easily captured by our methodology. One potential
subtlety is the softmax probabilities, which cannot be computed by the adver-
sary directly, though he has white-box access to the model. This is because he
only knows partially the original input. Nevertheless, this can be generated by

107

the auxiliary information generator by simulating Γ (S) on z and encode the
output of the softmax layer in the auxiliary information.

Interestingly, we observe that several privacy attacks Daneshi and

Guo (2011); d’Angelo et al. (2012); Kato and Harada (2014) for recov-

ering image features, which appeared before the work of Fredrikson et

al. Fredrikson et al. (2014), can also be captured using white-box MI

attacks in a similar way.

5.3 Black-Box MI Attacks

In this section we study black-box MI attacks. Due to lack of space, we

will focus on the simplest possible models – binary classification, where

all the features are binary as well. Using standard knowledge of Boolean

analysis, our results can also be extended to arbitrary generalized but

finite domains.

Recall that our main technical goal is to isolate important factors

that can affect model invertibility. Unfortunately, our formulation in

Section 5.2 is quite complex so many factors may play a role. For example,

intuitively the training process may have an impact – if we know that a

model is trained using linear regression, would this give us an advantage?

On the other hand, if one thinks about MI attacks at the application phase,

where a model is fixed anyway, then it suggests that invertibility should

be independent of the training.

To gain more understanding, we choose to start with simple scenarios

where we can characterize model invertibility exactly. Interestingly, even

these very abstract and seemingly oversimplified scenarios provide in-

sights to our main question. Perhaps more importantly, they also give rise

to intriguing and natural questions that provide ample scope for future

investigations.

108

Specifically, in this section we specialize Methodology 1 in the follow-

ing ways:

• We consider a Boolean model h : {-1,1}n 7→ {-1,1} in the test phase.

• We assume that the model invertibility is evaluated over the uniform

distribution. That is, we assume that a feature vector is drawn

uniformly from U{-1,1}n .

• We consider two simple auxiliary information generators. In the

first, noiseless generator gen1,

gen1(S, (x,y)) = (x−i , y).

In the second independent perturbation generator,

genρ(S, (x,y)) = (z−i , y)

where each bit of z−i equals that of x−i with probability 1
2 + ρ

2 , and is

flipped otherwise, or z−i ∼Nρ(x−i). Note that for ρ = 1 it degenerates

to our noiseless generator.

Under these specializations our main results are summarized as fol-

lows1.

1. In the noiseless case, we characterize model invertibility using the

influence of a Boolean function. Interestingly, it turns out in this

case, model invertibility is independent of the training. These results

are presented in Section 5.3.

2. In the noisy case, we show that model invertibility is related to the

stable influence of a Boolean function, though stable influence does
1For sake of exposition, the proofs are put in the appendix.

109

not exactly capture the invertibility. These results are presented in

Section 5.3.

3. Interestingly, we find that under noise, there is an interesting phe-

nomenon where a highly invertible model quickly becomes highly non-
invertible with only a little noise. We study this phenomenon under

the name “invertibility interference.” The results are presented in

Section 5.3.

Model Invertibility with No Noise

We now specialize our methodology for black-box MI attacks to the noise-

less scenario.

Definition 5.6 (Noiseless Uniform Black-Box attack). Let (Z,H,`) be a
learning problem where H consists of hypotheses of the form {-1,1}n 7→ {-1,1}.
Let Γ be a learning algorithm and S be a training set. For simplicity we denote
Γ (S) as h. Noiseless Uniform Black-Box MI attack for coordinate i is the
following game.
The MI-attack world: Let A be a probabilistic algorithm with binary output,
then

i. Nature draws (x,y) from DU . That is, nature draws x ∼ {-1,1}n, and set
y = h(x).

ii. Nature presents
gen1(S, (x,y)) = (x−i , y)

to the adversary.

iii. Adversary outputs AΓ (S)(x−i ,h(x)).

The gain of this game is Pr[AΓ (S)(x−i ,h(x)) = xi], where the probability is over
samples x1, . . . ,xn, and the randomness (if any) of the adversary.

110

The Simulated World: In this case sgen1 is defined as sgen1(S, (x,y)) = x−i .
Because xi is independently and uniformly drawn from {-1,1}, so for any
simulated attack A∗, Pr[A∗(x−i) = xi] = 1/2.

Therefore, the advantage of the game is defined to be Pr[AΓ (S)(x−i ,h(x)) =

xi]− 1/2.

For this type of MI attack, we consider the following deterministic
algorithm for the adversary A.

Algorithm 8 A Deterministic Algorithm for Noiseless Uniform Flat MI
Attack.
Input: x1, . . . ,xi−1,xi+1, . . . ,xn. y ∈ {−1,1}. Oracle access to f .

1: function NoiselessBlackboxMI(x1, . . . ,xn, y)
2: Compute y1 = f (x1, . . . ,xi−1,−1,xi+1, . . . ,xn), and y2 =
f (x1, . . . ,xi−1,+1,xi+1, . . . ,xn).

3: If y1 , y2, then if y1 = y, output −1, otherwise output +1. Other-
wise, output the constant 1.

We have the following simple lemma.

Lemma 5.7. Let A1 denote Algorithm 8. Then gain(A1,gen1,xi ,DU ,S,Γ) =
1
2 + Infi [Γ (S)]

2 , and so the advantage is Infi [Γ (S)]
2 . Further this gain is optimal.

Proof. For any fixed x1, . . . ,xi−1,xi+1, . . . ,xn, if f (x) , f (x⊕i), then we guess

xi right with probability 1. Otherwise, conditioned on f (x) = y, xi is

uniformly and independently distributed over {-1,1}. In this case, by

constantly guessing 1 the correct probability is 1/2. This gives the desired

gain of Algorithm 8, as well as its optimality.

While this lemma is trivial to prove, an interesting observation regard-

ing it is that the invertibility is independent of the training. That is, no

matter what Γ and S are (and what distribution S is drawn from), the

invertibility is characterized by influence, which is an intrinsic property of

the model itself.

111

For noiseless MI attacks, it is also easy to characterize the most and

least invertible functions. In the following recall that we assume the

nontrivial feature assumption.

Most Invertible Functions. With the no trivial feature assumption, the

most invertible function is χ[n](x) =
∏n
i=1xi , where every coordinate has

influence 1, and so the advantage is 1/2.

Least Invertible Functions. What functions are least invertible if we

measure the invertibility by the maximum influence MaxInfi[h]? In this

direction, a natural candidate is the majority function. Indeed, using

Stirling’s formula (see Exercise 2.22 O’Donnell (2014).), one can estimate

that Infi[MAJn] ≈ O(1/
√
n) for every i ∈ [n]. There are functions with

much smaller influence. For example,

ORn(x) =

1 x1 = x2 = · · · = xn = 1.

−1 otherwise.

Then it is easy to check that Infi[ORn] = 21−n for every i ∈ [n]. We can also

characterize the structure of the least invertible functions. Under the no

trivial feature assumption, these functions are those that are “constant

except at one point.”

Lemma 5.8. Consider any h : {-1,1}n 7→ {-1,1}. If Infi[h] > 0, then Infi[h] ≥
21−n.

Proof. If for any input x, f (x) , f (x⊕i), then there are at least two in-

puts, namely y = x,x⊕i such that f (y) , f (y⊕i), this shows the probability

Prx∼{-1,1}n[f (x) , f (x⊕i)] ≥ 21−n.

Lemma 5.9. Let h : {-1,1}n 7→ {-1,1} be a Boolean function. If Infi[h] = 21−n

for some i ∈ [n], then Infi[h] > 0 for every i ∈ [n].

112

Proof. Without loss of generality, assume for contradiction that x1 has

influence 0. Then by Lemma 2.28, there is a function g(x2, . . . ,xn) such that

Infj[g] = Infj[f] for every j ≥ 2. Now by Lemma 5.8, Infj[f] = Infj[g] ≥
22−n > 21−n for every j ≥ 2, contradiction.

Theorem 5.10. Let h : {-1,1}n 7→ {-1,1} be a Boolean function. Then h sat-
isfies the property that for every i ∈ [n], Infi[h] = 21−n if and only if h is
constant except at a unique point x0. In other words, there exist x0 ∈ {-1,1}n

and b ∈ {-1,1} such that

h(x) =

b if x = x0,

−b otherwise.

Proof. (⇐)(⇐)(⇐) If f is constant except at a unique point x0, then for any i, the

only inputs x on which f (x) , f (x⊕i) are x = x0 and x = x⊕i0 . This proves

that Infi[f] = 21−n.

(⇒)(⇒)(⇒) We induct on n. If n = 1, then Inf1[f] = 1, so f (x1) = x1 or −x1 and

the result is true. Fix any n ≥ 2. The induction hypothesis is the following:

Let g be a Boolean function on k ≤ (n− 1) variables. If every coordinate of

g has influence 21−k, then g is constant except at one point.

Now let f be a function on n variables that Infi[f] = 21−n for every

i ∈ [n]. Consider two Boolean functions on n− 1 variables, g(x2, . . . ,xn) =

f (1,x2, . . . ,xn) and h(x2, . . . ,xn) = f (−1,x2, . . . ,xn). We claim that the in-

fluence of x2 is 22−n in one of g and h, and 0 in the other. Indeed,

by the assumption that Inf2[f] = 21−n, there must be a unique setting

z−2 = (z1, z3, . . . , zn) such that f (z2→1) , f (z2→−1). Note that z1 is fixed to

be 1 or −1, thus the influence of x2 is 22−n in g or h, and 0 in the other.

Without loss of generality, suppose Inf2[g] = 22−n. Note that g is

defined over n− 1 variables, so by Lemma 5.9, Infj[g] > 0 for every 2 ≤
j ≤ n. On the other hand, clearly Infj[g] ≤ 22−n for every j = 2, . . . ,n. Thus

we can apply the induction hypothesis to conclude that g is constant

113

except one point. Moreover, h is constant. Finally, suppose g(y) = b except

g(y0) = −b where y0 ∈ {-1,1}n−1 and b ∈ {-1,1} is some fixed point. Because

Inf1[f] = 21−n, so it must be that h ≡ b. This shows that f is constant

except at one point.

Recall that a Boolean-valued function is unanimous if h(1, . . . ,1) = 1

and h(−1, . . . ,−1) = −1. Therefore we have the following two corollaries,

Corollary 5.11. ORn and ANDn are the only unanimous Boolean functions
where maximum influence is 21−n.

Corollary 5.12. ORn and ANDn are the only monotone Boolean functions
where maximum influence is 21−n.

Model Invertibility with Independent Noise

We now move on to the independent perturbation case.

Definition 5.13 (ρ-Independent Perturbation Uniform Black-Box MI At-

tack). Let (Z,H,`) be a learning problem whereH consists of hypotheses of the
form {-1,1}n 7→ {-1,1}. Let Γ be a learning algorithm and S be a training set.
For simplicity we denote Γ (S) as h. ρ-Independent Perturbation Uniform

Black-Box MI attack for coordinate i is the following game.

The MI-Attack world: Let A be a probabilistic algorithm with binary output,
then

i. Nature draws (x,y) from DU . That is, nature draws x ∼ {-1,1}n, and set
y = h(x).

ii. Nature presents
genρ(S, (x,y)) = (z−i , y)

to the adversary.

iii. Adversary outputs AΓ (S)(z−i , y).

114

The gain of this game is Pr[AΓ (S)(z−i , y) = xi], where the probability is over
samples x1, . . . ,xn, the randomness of genρ, and the randomness (if any) of the
adversary.

The simulated world: For simulation, sgenρ is defined as sgenρ(S,x−i , y) =

z−i . Because xi is independently and uniformly drawn from {-1,1}, so for any
simulated attack A∗, Pr[A∗(z−i) = xi] = 1/2.

Therefore, the advantage is defined as Pr[AΓ (S)(x−i , y) = xi]− 1/2.

We now consider the following algorithm corresponding to the adver-

sary A. The algorithm is the same as Algorithm 8, we repeat it here and

note that now the input to the algorithm is z−i , instead of x−i .

Algorithm 9 A Deterministic Algorithm for ρ-Perturbation Uniform Sin-
gleton Flat MI Attack.

Input: z1, . . . , zi−1, zi+1, . . . , zn. y ∈ {−1,1}. Oracle access to f .
function IndNoiseBlackboxMI(z1, . . . , zn, y)

Compute y1 = f (z1, . . . , zi−1,−1, zi+1, . . . , zn), and y2 =
f (z1, . . . , zi−1,+1, zi+1, . . . , zn).

If y1 , y2, then if y1 = y, output −1, otherwise output +1. Otherwise,
output the constant 1.

The gain of this algorithm is exactly the so called stable influence. In-

tuitively this is clear: Recall from Definition 2.24 that stable influence

is defined as Ex∼{-1,1}n,z∼Nρ(x)[Di f (x)Di f (z)]. Thus if Di f (x) and Di f (z)

are of the same sign then Algorithm 9 guessed correctly. If the signs are

different, then the guess is incorrect. Otherwise, one can show that the

gain is 1/2. Formally, we have the following theorem.

Theorem 5.14. Let ρ ∈ [0,1]. Let Aρ denote Algorithm 9. Then

gain(Aρ,genρ,xi ,DU ,S,Γ) =
1
2

+
Inf(ρ)

i [h]
2

115

where Inf(ρ)
i [h] is the ρ-stable influence of h (See Definition 2.24) at i-th

coordinate.

Proof. Let A denote Algorithm 9. Let α = f (xi→1) − f (xi→−1) and β =

f (zi→1)− f (zi→−1). Consider the following four disjoint events:

(E1) αβ > 0. Conditioned on E1 happens, A always outputs the correct

bit. Thus in this case Pr[b = xi | E1] = 1.

(E2) αβ < 0. Conditioned on E2 happens, A always output −xi upon

input z−i . Thus in this case Pr[b = xi | E2] = 0.

(E3) β = 0. In this case A outputs a uniform random bit. Thus Pr[b =

xi | E3] = 1
2 .

(E4) α = 0 but β , 0. We claim that Pr[b = xi | E4] = 1/2. Indeed, noting

that A is deterministic, writing out all the randomness we have

Pr[b = xi | E4]

= Pr
[
A(z−i , f (x)) = xi

∣∣∣∣
f (xi→1) = f (xi→−1),

f (zi→1) , f (zi→−1)
]

Note that the event E4 =
{
f (xi→1) = f (xi→−1), f (zi→1) , f (zi→−1)

}
only depends on x−i , and is independent of xi , so the above is

Pr[b = xi | E4]

=
1
2

(
Pr[A(z−i , f (xi→1)) = 1 | E4]

+ Pr[A(z−i , f (xi→−1)) = −1 | E4]
)

116

Note that conditioned on E4,

Pr
x−i∼{-1,1}n−1

z−i∼Nρ(x−i)

[A(z−i , f (xi→−1)) = −1 | E4]

= Pr
x−i∼{-1,1}n−1

z−i∼Nρ(x−i)

[A(z−i , f (xi→1)) = −1 | E4]

This gives that

Pr
x−i∼{-1,1}n−1

z−i∼Nρ(x−i)

[A(z−i , f (xi→1)) = 1 | E4]

+ Pr
x−i∼{-1,1}n−1

z−i∼Nρ(x−i)

[A(z−i , f (xi→−1)) = −1 | E4]

=1

Therefore, the probability of guessing correctly is Pr[E1] + Pr[E3]+Pr[E4]
2 .

Observe that Pr[E1]−Pr[E2] is exactly the ρ-stable influence (ρ ∈ [0,1]),

Pr[E1]−Pr[E2] =E[Di f (x)Di f (z)]

=Stabρ[Di f]

=Inf(ρ)
i [f].

Combining with Pr[E1] + Pr[E2] + Pr[E3] + Pr[E4] = 1, we have that

2Pr[E1] + Pr[E3] + Pr[E4] = 1 + Inf(ρ)
i [f]

Dividing by 2 on both sides gives the desired gain.

For ρ = 1, Inf1
i [h] = E[Di f (x)Di f (z)] = E[Di f (x)2] = Infi[h]. We thus

get back the influence in the noiseless model of Lemma 5.7.

117

Remark 5.15 (On Optimality). Unfortunately, for the ρ-independent per-
turbation model, Algorithm 9 no longer achieves the maximum possible gain.
That is, there exists some model h : {-1,1}n 7→ {-1,1} and some inversion
algorithm A′, such that the gain of A′ is larger than (1 + Inf(ρ)

i [h])/2. The
intuition is that, since the adversary knows h(x) exactly, so it can leverage the
function table of h to “de-noise”, For example, consider ORn. As long as we
see that the model output is 1, we know that all input bits are 1. Therefore,
the advantage we can achieve, even in the independent perturbation model,
is Infi[ORn]/2 = 2−n for any 0 ≤ ρ ≤ 1. On the other hand, the advantage of
Algorithm 9 is ρn−12−n. We pose the following question that we would like to
investigate in the future.

Question 1. Consider ρ-independent perturbation model. Let Aρ denote Al-
gorithm 9. Is it the case that for any h : {-1,1}n 7→ {-1,1}, and any probabilistic
algorithm A′,

gain(A′,genρ,xi ,DU ,S,Γ)

≤ gain(Aρ,genρ,xi ,DU ,S,Γ) + on(1) ?

Invertibility Interference

Intuitively it is clear that noise will negatively the gain of the adversary.

Theorem 5.14 quantifies this intuition using stable influence. For example,

as we saw in the above, the gain of a natural algorithm (Algorithm 9) on

ORn goes from Infi[ORn] to ρn−1 Infi[ORn], which is exponentially small

in the influence. However, this example is not very interesting in the sense

that the influence of ORn is already very small (21−n) in the noiseless case.

A more interesting phenomenon regarding noise is that highly invert-

ible models in the noiseless case quickly becomes highly non-invertible

due to a little noise. The reason behind is that multiple influential co-

ordinates interfere with each other under noise. Let us see an exam-

118

ple. In the noiseless model the most invertible function is the parity

function χ[n] =
∏
i∈[n]xi . In this case, Infi[f] = 1 for every i. On the

other hand, under independent noise, the invertibility of χn becomes

Inf(ρ)
n

[
χ[n]

]
= Stabρ

[
Dnχ[n]

]
=

〈
χ[n−1],Tρχ[n−1]

〉
= ρn−1. Therefore the in-

vertibility decays exponentially fast in n.

We term this phenomenon “invertibility interference:” When noise

presents, if one does not know one of these influential coordinates exactly,

then he cannot effectively invert the model to deduce the target feature.

What is the stable influence if we have t influential coordinates? In this

direction, we have the following simple result:

Theorem 5.16. Suppose that h : {-1,1}n 7→ {-1,1} has t coordinates with
influence 1. Let 0 < ρ ≤ 1, then for any i ∈ [n], Inf(ρ)

i [h] ≤ ρt−1 Infi[h].

Proof. We know that Inf(ρ)
i [f] =

∑
S3i ρ

|S |−1f̂ (S)2. Consider any S ⊆ [n]

such that |S | < t. We show that f̂ (S) = 0. For this let A = {x : f (x) = χS(x)}.
We show that |A| = |Ac| where Ac is the complement of A. Indeed, consider

any position i∗ < S such that Infi∗[f] = 1. Such i∗ must exist by our

assumption. Thus the mapping x 7→ x⊕i
∗

is a mapping from A to Ac that

is one-to-one and onto. Therefore,

Inf(ρ)
i [f] =

∑
S3i:|S |≥t

ρ|S |−1f̂ (S)2

≤ρt−1
∑
S3i

f̂ (S)2

≤ρt−1 Infi[f].

The proof is complete.

Question 2. If, instead of having coordinates of influence 1, we are only
guaranteed that individual influence is lower bounded by 1− δ for some δ > 0,
how fast will the stable influence decay with respect to δ?

119

5.4 White-Box MI Attacks

We now move on to study white-box MI attacks. As discussed before, we

assume that the computation of the models follows a sequential composi-

tion. This thus gives a natural view of MI attacks as communication games:
One can think of each layer of the model as a player who sends a message

to the next player, and the adversary as another player who observes the

model output and has some additional information. Together, the goal

of this game is to compute some function τ . This view gives a natural

question:

“How would knowing the communication structure and (possibly) observing
some intermediate information in the communication help MI attacks?”

Empirically, the answer is that it helps a lot. As mentioned earlier, it is

essential for white-box attacks as studied in Fredrikson et al. (2015) to

have access to the auxiliary confidence information, which makes the

inversion algorithm much more effective.

The main purpose of this section is to give theoretical justifications for

these empirical observations. At a high level, our results are summarized

as follows:

1. Similar to our study of black-box MI attacks, we choose to special-

ize our methodology so as to obtain theoretical insights. To do so,

we focus on white-box MI attacks on decision trees. An advantage

of studying attacks on decision trees is its simplicity: The com-

munication channel is very restricted, not only it is a sequential

composition, but also in each iteration a player only reads a single

bit of the input, and decides a binary output.

2. We show how to interpret white-box MI attacks on decision trees

as alternating (communication) games. Specifically, these are com-

munication games where the communication channel is one-way,

120

unicast (following the sequential composition), and players alter-
natively hold two inputs. We give examples showing that these

communication games are very restricted.

3. We show that, however, even when restricting these communication

games to have 1 bit of communication between two neighboring

players, it is still the case that for any goal function τ , there exists

a game with enough players (corresponding to a machine learning

model with enough many layers), such that there is an adversary

who can compute τ correctly everywhere. This result illustrates the

unexpected computational power of a restricted communication

game, and in particular, that the leakage can be significant even in a

very restricted white-box case.

We now give more details in the rest of this section.

Decision Trees, MI Attacks, and Alternating Games

From now on we consider oblivious decision trees, which are decision trees

in which the same feature is examined at each level (of the tree). This

restricts the machine learning models we consider (it is even a subclass of

decision trees). Note that, however, the more we restrict the model (and

its communication), the stronger our conclusion (regarding leakage in the

white-box case) is if we can show significant information leakage.

We have mentioned that for a model with sequential composition, the

communication channel is restricted: it is one-way and unicast. That is,

each player only sends one message to the next player, in a fixed order.

This is in sharp contrast with communication games studied in typical

communication complexity literature Damm et al. (1998); Chakrabarti

(2007); Braverman et al. (2013); Fischer et al. (1985); Karp et al. (2000);

Kempe et al. (2003); Ganor and Raz (2014), where the channel is either

bidirectional or the messages are broadcasted.

121

We note that for oblivious decision trees, such communication games

are further restricted. Consider an adversary who knows part of the input

to the decision tree, then the communication game alternates between

input he knows and input he does not know. Specifically, suppose that the

input to the decision tree is z ∈ {0,1}n, and assume that the adversary can

see the bits at positions K ⊆ [n] (K stands for “known” positions), then,

without loss of generality, the communication game can be viewed as: the

first player examines several variables at positions in K , then sends a bit

to the next player, who then examines several variables in [n] \K , and

so on. The final player, which is the adversary (who knows bits in K),

determines an output.

The following definition captures our discussion so far mathemati-

cally:

Definition 5.17 (Alternating MI Attacks (AMI Attacks)). Let n,` be natural
numbers. Let k ≥ 3 be also a natural number. In Alternating MI Attack there
are (k−1) ≥ 2 functions: h1, . . . ,hk−1 in the form of h1 : {0,1}n 7→ {0,1}` and hi :

{0,1}n×{0,1}` 7→ {0,1}` (i = 1, . . . , k−1). let h(1), . . . ,h(k−1) : {0,1}n×{0,1}n 7→
{0,1}` be the following sequence:

h(1)(x,y) = h1(x)

h(i)(x,y) = hi(y,h
(i−1)(x,y)) i = 2,4, . . .

h(i)(x,y) = hi(x,h
(i−1)(x,y)) i = 3,5, . . .

LetA be a probabilistic algorithm that is an “adversary.” Let τ : {0,1}n×{0,1}n 7→
{0,1} be a Boolean function on 2n bits. The alternating MI attack proceeds as
follows:

i. Nature samples x,y uniformly random from {0,1}n.

ii. If k is odd, then nature presents x to A, but not y. Otherwise, nature
presents y to A, but not x.

122

iii. Nature also presents the output of h(k−1), that is the output of the “outer-
most model”, to A.

For odd k, the gain of the alternating MI attack is measured by

Pr[A(x,h(k−1)(x,y)) = τ(x,y)].

Similarly for even k, the gain is defined as Pr[A
(
y,h(k−1)(x,y)) = τ(x,y)

]
. Both

probabilities are taken over all the randomness: the randomness of sampling
x,y (uniformly), the private randomness of h1, . . . ,hk, and the randomness of
A.

Note that the adversary in this formulation can only see the output of

the outer model (h(k−1)), beyond knowing part of the input. However, we

also want to capture the intuition that the adversary may “inspect” some

messages passed between layers in a machine learning model. We thus

consider the following modification of the definition:

Definition 5.18 (Alternating MI Attacks with Early Inspection). In alter-
nating MI attacks with early inspection, the only difference is that instead of
feeding h(k−1) to the adversary, the adversary can choose once to inspect the
output of h(i) (1 ≤ i ≤ k − 1), and based on that to compute the output.

Note that we restrict the adversary to be only able to inspect once

— this is, again, to pose restriction on the communication, which gives

stronger implication on the risk of leakage.

In the above definition of alternating MI attacks, we still need to distin-

guish between “layers” in a machine model, and the adversary. Towards

our main result, which states that for any goal function τ there exists

a model (with enough layers) that can allow an adversary to compute

τ everywhere, we find that it is more convenient to work with a defi-

nition where we do not distinguish between functions inside a model

123

and the function computed by the adversary. This leads to the following

definition.

Definition 5.19 (Alternating One-Way Unicast Communication Games

(AOWU)). Let n,k,` be natural numbers. In Alternating One-Way Unicast
Communication Games we have:

(1) The goal of the communication is to compute some function τ : {0,1}n×{0,1}n 7→
{0,1}.

(2) There are k players, P1, . . . , Pk. These players are allowed to use private
randomness.

(3) The players communicate in the way of one-way unicast. Namely, they
play in the fixed order of P1, . . . , Pk, and player Pi is only allowed to send
one message, a bit string of length `, to player Pi+1, for i = 1, . . . , k − 1.

(4) Pk is required to output a single bit, which is viewed as the output of the
protocol.

Similar to alternating MI attack, one can define the sequence of composed
function P (1), . . . , P (k), where P (i) is the function computed by the first i players
on {0,1}n×{0,1}n:

P (1)(x,y) = P1(x)

P (i)(x,y) = Pi(y,P
(i−1)(x,y)) i = 2,4, . . .

P (i)(x,y) = Pi(x,P
(i−1)(x,y)) i = 3,5, . . .

For AMI Attacks with Early Inspection, we have the following defini-

tion,

Definition 5.20 (AOWU∗). An AOWU game with early stopping, or called
an AOWU∗ game, is an AOWU game where any player Pi , i ∈ [k], can stop the
protocol, and claim his or her output as the output of the protocol.

124

From our discussion so far it follows that

Lemma 5.21. (n,k,`)-alternating MI attack and (n,k,`)-AOWU games are
equivalent. Further, (n,k,`-alternating MI attack with early inspection and
(n,k,`)-AOWU∗ games are equivalent.

Proof. By viewing the first k players P1, . . . , Pk as models, the last player

Pk+1 as the adversary A , and message strings in {0,1}` as the model output

in the model composition, the proof is complete.

On the Power of AMI Attacks with Early Inspection

We now study the power of alternating MI attacks with early inspection.

Clearly, we can equivalently study AOWU games with early stop. We

show that, even when restricting to 1 bit of communication, it is still

surprisingly powerful.

To motivate this result, let us fist give an example, which illustrates

“how restricted” these games are.

Example 5.22. Let IP(x,y) be the inner product of x and y, that is for x,y ∈
{0,1}n, IP(x,y) =

⊕n
i=1(xi ∧ yi). Consider one-way unicast alternating games

that try to compute IP(x,y). The communicated messages are restricted to be
of 1-bit long (that is ` = 1).

Let us consider the simple case that n = 2. That is, we want to compute
the inner product of two length-2 bit strings. Note that in the traditional
two-player communication model where Alice holds x and Bob holds y, then
there is a trivial protocol where Alice sends to Bob 2 bit messages, one x1 and
one x2, so that Bob then has complete knowledge of x and can compute any

function on x,y.
However, with AOWU games, there is a now a difficulty. Suppose that P1

sends x1 to P2, and P2 computes x1y1. Then what will P2 send to P3? If P2

sends y2 to P3, then the progress that P2 has made is essentially lost. However,

125

if he sends x1y1, P3 still does not know any information about y2. Therefore,
at least with 2 bits communication they cannot solve the problem. What is
the “right” lower bound on the number of players that are needed in order to
compute inner product with 1 bit of communication?

We now construct a “universal” protocol that can compute any τ :

{0,1}n×{0,1}n using an AOWU∗ protocol with 1 bit of communication.

Construction 1 (Universal-1 Protocol). Let τ : {0,1}n×{0,1}n 7→ {0,1} be
any function. Consider the following protocol:

• There are 2 · 2n = 2n+1 players, split into pairs, (1,2), (3,4), (2i −
1,2i), . . . , (2n+1 −1,2n+1). Note that odd-numbered players hold x, and
even-numbered players hold y.

• Player 2i − 1 sends the following bit to player 2i: He sends 1 if x is the
lexicographically the i-th smallest string of all binary strings of length
n. For example, player 1 sends 1 to player 2 if x = 0, and sends a bit 0

otherwise.

• For player 2i, if she receives a bit 1, then she can be certain about the
value of x. Because she also knows y, she can compute τ(x,y), stops
the protocol early by asserting the special stopping bit, and claims the
output. Otherwise, she keeps the special stop bit as 0 to indicate player
2i + 1 to continue the protocol.

Note that early stopping is essential here, otherwise player 2i+1 cannot

distinguish between a “value” that is for computing τ and a “signal” which

indicates that the computation is already done. Following the construction

we immediately have the following theorem,

Theorem 5.23. Universal-1 protocols compute any τ with 1-bit message and
2n+1 players.

126

Thus we have obtained the claimed main result regarding alternating

MI attacks with early inspection.

Theorem 5.24. For any goal function τ : {0,1}n×{0,1}n 7→ {0,1}, there exists
a machine learning model with O(2n) layers, and an alternating MI attack
with 1-bit communication, that computes τ correctly everywhere.

We close this section with two open questions.

Question 3. For 1-bit communication, is universal-1 protocol essentially
optimal in the sense that there is a function τ : {0,1}n×{0,1}n where any
protocol computing τ requires Ω(2n) rounds of communications?

Question 4. For 1-bit communication, is there a universal AOWU protocol
(instead of AOWU∗) that computes every function τ : {0,1}n×{0,1}n 7→ {0,1}?

5.5 Connections with Other Cryptographic

Notions

In this section we compare MI attack with two classic cryptographic

primitives: Hard-Core Predicate and Secure Multiparty Computation. We

assume that the readers have some basic familiarity with cryptographic

terminologies.

Connection with Hard-Core Predicate. Let us first recall the definition

of hard-core predicate

Definition 5.25 (Hard-Core Predicate Goldreich (2001)). Let Un be a uni-
form distribution over {0,1}n, and f : {0,1}∗ 7→ {0,1}∗. A polynomial time
computable predicate b : {0,1}∗ 7→ {0,1} is called a hard-core of f if for every
probabilistic polynomial time algorithm A′, there exists a negligible function

127

µ(·) such that for all sufficiently large n’s

Pr
x∼Un

[A′(f (x)) = b(x)] ≤ 1
2

+µ(n).

By viewing f as a “model”, one can then simulate this definition by

a black-box MI attack. Specifically, let out(x) = b(x), which is to com-

pute a single bit. The joint distribution is JU = (Un, f (Un)). In the real

world, given x ∼ Un, the auxiliary information generator gen gives the

advice string gen(df ,x, f (x)) = f (x) to the adversary A′. One can then

observe that the gain of A′ in the real world, gainJU ,f ,b(gen,A
′), is exactly

Pr(x,y)∼JU [A′(y) = b(x)] = Pr[A′(f (Un)) = b(Un)]. Therefore the goal of hard-

core predicate is to find a “hard” predicate b so that for any adversary

A′, any negligible function µ(·), and all sufficiently large n’s, the gain

gainJU ,f ,b(gen,A
′) ≤ 1/2 +µ(n).

Following this simulation one can also observe two notable differences:

First, in an MI attack an adversary typically has more auxiliary infor-

mation than the case of hard-core predicates (which only observes the

function output). For example, in a black-box MI attack as defined in

Definition 5.6, an adversary has information about all except one feature.

Second, we note that the goal of MI attacks is not to construct hard predi-

cates. Rather, its goal is somewhat its “dual”: The purpose is to study the

leakage of certain model with respect to computing some output function.

For statistical output, understanding this leakage may help us decide

what information can be safely published.

Connection with Secure Multiparty Computation (SMC). A more in-

teresting notion to compare with is the Secure Multiparty Computation

(SMC). To this end, we recall first the definition of m-party secure proto-

cols

Definition 5.26 (m-party secure protocols – sketch Goldreich (2004)). Let
f be an m-ary functionality and Π be an m-party protocol operating in the

128

real model.

• For a real-model adversary A, controlling some minority of the parties
(and tapping all communication channels), and an m-sequence x, we
denote by REALΠ,A(x) the sequence of m outputs resulting from the
execution of Π on input x under attack of the adversary A.

• For an ideal-model adversaryA′, controlling some minority of the parties,
and an m sequence x, we denote by IDEALΠ,A(x) the sequence of m
outputs resulting from the ideal process (that they together send input
to a trusted third party, which then gives back the output) on input x
under attack of the adversary A′.

We say that Π securely implements f with honest majority if for every fea-
sible real model adversary A, controlling some minority of the parties, there
exists a feasible ideal model, controlling the same parties, so that the prob-
ability ensembles {REALΠ,A(x)}x and {IDEALΠ,A(x)}x are computationally
indistinguishable.

We observe that in this definition the privacy concerns of the output
is not considered. Specifically, it can happen that in the ideal case, upon

receiving the output from the trusted third party, one can infer partial

information about the input of the other party. Yet such concerns will

not factor in the distinguishability as they are contained in the ideal

world. Put in another way, the privacy concerns considered in a secure

protocol is whether the communication among parties in the real world

leaks additional information compared to the ideal case.

Black-box MI Attacks and SMC. By contrast, for black-box MI attack,

one considers precisely the privacy concerns of the output. That is how

much sensitive information an adversary can recover from the output.

To this end, one may argue that it is questionable why should one be

129

bothered with the concern of the output, since this is the purpose of the

computation.

On one hand, we feel that a fundamental difference here is what

information constitutes the output. In the setting of SMC, the output is

precisely defined (for example, whether two inputs are equal). However,

in the setting of MI attack, the output is statistical and “noisy.” For

example, a model may carry too much information of some individuals if

the learning procedure over-fits. Publishing such models may thus induce

effective MI attacks and unwanted disclosure. Studying MI attacks can

help us identify and quantify such leakage.

On the other hand, we note that, frequently, additional information is

intentionally revealed by an SMC protocol due to performance considera-

tions (for example, revealing the centroid in privacy-preserving clustering

or revealing a bit of a honest party’s input in the dual-execution SMC

protocol Huang et al. (2012)). However, the ramifications of leaking this

additional information are unclear. Perhaps our framework can be used

to address such problems.

More concretely, let us consider a simple example where our current

results for MI attacks (though studied in the setting of machine learning)

can be applied to SMC. Consider two parties Alice and Bob who jointly

compute a Boolean function f (x,y), where x is Alice’s input and y is Bob’s

input. Suppose that the inputs are drawn uniformly from two sets X,Y .

Now if Bob is malicious, and can see insensitive information x−i of Alice

for x ∼ X, then with access to f how much better can he guess xi over X,

compared to random guessing?

Let fy(x) = f (x,y) (i.e. fy is the specialization of f where the second

input is y). The answer to this question becomes exactly an MI problem

against uniform distribution over X, where the adversary Bob has auxil-

iary information x−i . Our results in Section 5.3 tells that the advantage is

the influence of coordinate i of the function fy(·)

130

Therefore, what remains is to estimate the influence of coordinate i of

fy . In this direction, we note that recent years there has been interesting

progress on the algorithmic side of the influence theory. For example, a

recent work by Ron, Rubinfeld, Safra, Samorodnistsky and Weinstein Ron

et al. (2012) proves lower bounds in approximating influence and gives a

better upper bound for monotone Boolean functions. By invoking their

influence estimation algorithms (for example, their Algorithm 1), one can

thus obtain a quantitative understanding of the risk of outputting the

function f .

White-box MI Attacks and SMC. This situation changes when we con-

sider white-box MI attack. Intuitively, in composed MI attack, if one view

sub-models as “parties”, then we can ask how much information do these

compositions (or communication) leak. Therefore, even if one modulo the

concerns of the output of the outer-most model, one could still investigate

the additional leakage caused by the composition (or communication).

This is closer to the goal of SMC.

Unlike SMC, however, is that the communication pattern of the white-

box MI attacks is usually much more restricted. For example, composition

of models in the usual sense gives “one-way unicast communication”,

rather than broadcasts, or arbitrary point-to-point communication (so

it is not one-way). Indeed, as we saw in the chapter, this way of com-

munication induces intriguing and somewhat unexpected connections

with communication complexity that does not seem to have been studied

before.

131

6 conclusion and future directions

In this thesis we study the interplay of stability with data privacy. From

differential privacy to model inversion attacks, our study shows that sta-

bility, though may be in different forms, plays a key role. Specifically,

in Chapter 3 we achieve better differentially private stochastic gradient

descent by giving a novel analysis of the global stability of stochastic

gradient descent. In Chapter 4 we clarify and quantify the relationship

between differential privacy and model inversion by analyzing the sta-

bility of empirical risk minimization. Finally, in Chapter 5 we study a

different form of stability, the influence, that is closely related to model

inversion attacks.

There are many intriguing future directions to pursue. For differen-

tially private optimization, an important direction is to have a better

understanding of the convergence behavior of private SGD when we can

only afford to do a constant number of passes over the data. BST14 Bass-

ily et al. (2014) provides a convergence bound for private SGD when

O(m) passes are made over the data. SCS13 Song et al. (2013) does not

provide a convergence proof; however, the work of Duchi, Jordan and

Wainwright Duchi et al. (2013), which considers local differential privacy,

a privacy model where data providers do not even trust the data collector,

can be used to conclude convergence for SCS13, though at a very slow rate.

Finally, while our method converges very well in practice with multiple

passes, we can only prove convergence with one pass, and the bound is

weaker than BST14, which uses m passes. Can we prove convergence

bounds of our algorithms for multiple-passes and match the bounds of

BST14?

For model inversion attacks our study barely scratches the surface.

We cannot answer even basic questions such as the optimality of stable

influence. Further, our understanding of “invertibility interference” is

132

also shallow. There are also many questions regarding white-box model

inversion attacks and their connection to restricted communication pro-

tocols. To this end, it seems that the natural first step is to further study

AOWU and AOWU∗ protocols.

133

references

Apache Mahout. mahout.apache.org.

Aono, Yoshinori, Takuya Hayashi Le Trieu Phong, and Lihua Wang. 2015.

Fast and secure linear regression and biometric authentication with

security update.

Applegate, David, and Ravi Kannan. 1991. Sampling and integration

of near log-concave functions. In Proceedings of the 23rd annual ACM
symposium on theory of computing, may 5-8, 1991, new orleans, louisiana,
USA, 156–163.

Barthe, Gilles, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and

Pierre-Yves Strub. 2016. Proving differential privacy via probabilistic

couplings. CoRR abs/1601.05047.

Bassily, Raef, Adam Smith, and Abhradeep Thakurta. 2014. Private

empirical risk minimization: Efficient algorithms and tight error bounds.

In FOCS.

Braverman, Mark, Faith Ellen, Rotem Oshman, Toniann Pitassi, and

Vinod Vaikuntanathan. 2013. Tight bounds for set disjointness in the

message passing model. CoRR abs/1305.4696.

Bubeck, Sébastien. 2015. Convex optimization: Algorithms and com-

plexity. Foundations and Trends in Machine Learning 8(3-4):231–357.

Chakrabarti, Amit. 2007. Lower bounds for multi-player pointer jump-

ing. In 22nd annual IEEE conference on computational complexity (CCC
2007), 13-16 june 2007, san diego, california, USA, 33–45.

Chaudhuri, Kamalika. personal communication.

mahout.apache.org

134

Chaudhuri, Kamalika, Claire Monteleoni, and Anand D. Sarwate. 2011.

Differentially private empirical risk minimization. Journal of Machine
Learning Research 12:1069–1109.

Chaudhuri, Kamalika, and Staal A. Vinterbo. 2013. A stability-based

validation procedure for differentially private machine learning. In NIPS.

Damm, Carsten, Stasys Jukna, and Jiri Sgall. 1998. Some bounds on mul-

tiparty communication complexity of pointer jumping. Computational
Complexity 7(2):109–127.

Daneshi, Maryam, and JQ Guo. 2011. Image reconstruction based on

local feature descriptors. Dept. Elect. Eng., Stanford Univ., Stanford, CA,
USA, Tech. Rep.

d’Angelo, Emmanuel, Laurent Jacques, Alexandre Alahi, and Pierre

Vandergheynst. 2012. From bits to images: Inversion of local binary

descriptors. CoRR abs/1211.1265.

Diaz, Francisco J., and Jose Yeh, Hung-Wen de Leon. 2012. Role of sta-

tistical random-effects linear models in personalized medicine. Current
Pharmacogenomics and Personalized Medicine 10(1):22–32.

Dinur, Irit, and Kobbi Nissim. 2003. Revealing information while

preserving privacy. In Proceedings of the twenty-second ACM SIGACT-
SIGMOD-SIGART symposium on principles of database systems, june 9-12,
2003, san diego, ca, USA, 202–210.

Duchi, John C., Michael I. Jordan, and Martin J. Wainwright. 2013. Local

privacy and statistical minimax rates. In FOCS.

Dwork, Cynthia, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006.

Calibrating noise to sensitivity in private data analysis. In TCC.

135

Dwork, Cynthia, and Moni Naor. 2008. On the difficulties of disclosure

prevention in statistical databases or the case for differential privacy.

Journal of Privacy and Confidentiality 2(1):8.

Dwork, Cynthia, and Aaron Roth. 2014. The algorithmic foundations

of differential privacy. Foundations and Trends in Theoretical Computer
Science 9(3-4):211–407.

Dwork, Cynthia, Adam D. Smith, Thomas Steinke, Jonathan Ullman, and

Salil P. Vadhan. 2015. Robust traceability from trace amounts. In IEEE
56th annual symposium on foundations of computer science, FOCS 2015,
berkeley, ca, usa, 17-20 october, 2015, 650–669.

Erlingsson, Úlfar, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR:

randomized aggregatable privacy-preserving ordinal response. In ACM
ccs.

Feng, Xixuan, Arun Kumar, Benjamin Recht, and Christopher Ré. 2012.

Towards a unified architecture for in-rdbms analytics. In SIGMOD.

Fischer, Michael J., Nancy A. Lynch, and Mike Paterson. 1985. Impos-

sibility of distributed consensus with one faulty process. J. ACM 32(2):

374–382.

Fredrikson, Matthew, Somesh Jha, and Thomas Ristenpart. 2015. Model

inversion attacks that exploit confidence information and basic coun-

termeasures. In Proceedings of the 22nd acm conference on computer and
communications security.

Fredrikson, Matthew, Eric Lantz, Somesh Jha, Simon Lin, David Page,

and Thomas Ristenpart. 2014. Privacy in pharmacogenetics: An end-

to-end case study of personalized warfarin dosing. In Proceedings of the
23rd USENIX security symposium, san diego, ca, usa, august 20-22, 2014.,
17–32.

136

Ganor, Anat, and Ran Raz. 2014. Space pseudorandom generators by

communication complexity lower bounds. In Approximation, randomiza-
tion, and combinatorial optimization. algorithms and techniques, APPROX-
/RANDOM 2014, september 4-6, 2014, barcelona, spain, 692–703.

Goldreich, Oded. 2001. The foundations of cryptography - volume 1, basic
techniques. Cambridge University Press.

———. 2004. The foundations of cryptography - volume 2, basic applications.
Cambridge University Press.

Gray, Jim, et al. 1997. Data Cube: A Relational Aggregation Operator

Generalizing Group-By, Cross-Tab, and Sub-Totals. Data Min. Knowl.
Discov. 1(1):29–53.

Hardt, M., B. Recht, and Y. Singer. 2015. Train faster, generalize better:

Stability of stochastic gradient descent. ArXiv e-prints. 1509.01240.

Hardt, Moritz. 2015. Towards practicing differential privacy. http:

//blog.mrtz.org/2015/03/13/practicing-differential-privacy.

html.

Haussler, David. 1992. Decision theoretic generalizations of the PAC

model for neural net and other learning applications. Inf. Comput. 100(1):

78–150.

Hellerstein, Joe, et al. 2012. The MADlib Analytics Library or MAD

Skills, the SQL. In VLDB.

Huang, Yan, Jonathan Katz, and David Evans. 2012. Quid-pro-quo-

tocols: Strengthening semi-honest protocols with dual execution. In

IEEE symposium on security and privacy, SP 2012, 21-23 may 2012, san
francisco, california, USA, 272–284.

1509.01240
http://blog.mrtz.org/2015/03/13/practicing-differential-privacy.html
http://blog.mrtz.org/2015/03/13/practicing-differential-privacy.html
http://blog.mrtz.org/2015/03/13/practicing-differential-privacy.html

137

International Warfarin Pharmacogenetic Consortium. 2009. Estima-

tion of the warfarin dose with clinical and pharmacogenetic data. New
England Journal of Medicine 360(8):753–764.

Jain, Prateek, Pravesh Kothari, and Abhradeep Thakurta. 2012. Differen-

tially private online learning. In COLT.

Jain, Prateek, and Abhradeep Thakurta. 2013. Differentially private

learning with kernels. In ICML.

Johnson, Rie, and Tong Zhang. 2013. Accelerating stochastic gradient

descent using predictive variance reduction. In NIPS.

Karp, Richard M., Christian Schindelhauer, Scott Shenker, and Berthold

Vöcking. 2000. Randomized rumor spreading. In 41st annual symposium
on foundations of computer science, FOCS 2000, 12-14 november 2000,
redondo beach, california, USA, 565–574.

Kasiviswanathan, Shiva Prasad, Mark Rudelson, and Adam Smith. 2013.

The power of linear reconstruction attacks. In Proceedings of the twenty-
fourth annual ACM-SIAM symposium on discrete algorithms, SODA 2013,
new orleans, louisiana, usa, january 6-8, 2013, 1415–1433.

Kasiviswanathan, Shiva Prasad, and Adam Smith. 2008. A note on

differential privacy: Defining resistance to arbitrary side information.

CoRR abs/0803.3946.

Kato, Hiroharu, and Tatsuya Harada. 2014. Image reconstruction from

bag-of-visual-words. In 2014 IEEE conference on computer vision and
pattern recognition, CVPR 2014, columbus, oh, usa, june 23-28, 2014,

955–962.

Kempe, David, Alin Dobra, and Johannes Gehrke. 2003. Gossip-based

computation of aggregate information. In 44th symposium on foundations

138

of computer science (FOCS 2003), 11-14 october 2003, cambridge, ma, usa,
proceedings, 482–491.

Kifer, Daniel, and Ashwin Machanavajjhala. 2011. No free lunch in data

privacy. In Sigmod conference, 193–204.

———. 2014. Pufferfish: A framework for mathematical privacy defini-

tions. ACM Trans. Database Syst. 39(1):3.

Kifer, Daniel, Adam D. Smith, and Abhradeep Thakurta. 2012. Private

convex optimization for empirical risk minimization with applications

to high-dimensional regression. In COLT.

Li, Ninghui, Wahbeh H. Qardaji, Dong Su, Yi Wu, and Weining Yang.

2013. Membership privacy: a unifying framework for privacy definitions.

In ACM ccs, 889–900.

Lindell, Yehuda, and Eran Omri. 2011. A practical application of differ-

ential privacy to personalized online advertising. IACR Cryptology ePrint
Archive 2011:152.

McGregor, Andrew, Ilya Mironov, Toniann Pitassi, Omer Reingold, Kunal

Talwar, and Salil P. Vadhan. 2011. The limits of two-party differential

privacy. Electronic Colloquium on Computational Complexity (ECCC) 18:

106.

McKeague, IanW., and Min Qian. 2011. Sparse functional linear re-

gression with applications to personalized medicine. In Recent advances
in functional data analysis and related topics. Contributions to Statistics,

Physica-Verlag HD.

McSherry, Frank, and Kunal Talwar. 2007. Mechanism design via differ-

ential privacy. In 48th annual IEEE symposium on foundations of computer
science (FOCS 2007), october 20-23, 2007, providence, ri, usa, proceedings,
94–103.

139

Nemirovsky, AS, and DB Yudin. 1983. Problem complexity and method

efficiency in optimization.

Nesterov, Yurii. 2004. Introductory lectures on convex optimization : a basic
course. Applied optimization, Kluwer Academic Publ.

O’Donnell, Ryan. 2014. Analysis of boolean functions. Cambridge Univer-

sity Press.

Parikh, Neal, and Stephen P. Boyd. 2014. Proximal algorithms. Founda-
tions and Trends in Optimization 1(3):127–239.

Polyak, Boris T. 1987. Introduction to optimization. Optimization Soft-

ware.

Reed, Jason, Adam J. Aviv, Daniel Wagner, Andreas Haeberlen, Ben-

jamin C. Pierce, and Jonathan M. Smith. 2010. Differential privacy for

collaborative security. In Proceedings of the third european workshop on
system security, EUROSEC 2010, paris, france, april 13, 2010, 1–7.

Ron, Dana, Ronitt Rubinfeld, Muli Safra, Alex Samorodnitsky, and Omri

Weinstein. 2012. Approximating the influence of monotone boolean

functions in o(
√

n) query complexity. TOCT 4(4):11.

Roux, Nicolas Le, Mark W. Schmidt, and Francis R. Bach. 2012. A

stochastic gradient method with an exponential convergence rate for

finite training sets. In NIPS.

Rubinstein, Benjamin I. P., Peter L. Bartlett, Ling Huang, and Nina Taft.

2009. Learning in a large function space: Privacy-preserving mechanisms

for SVM learning. CoRR abs/0911.5708.

Shalev-Shwartz, S., and S. Ben-David. 2014. Understanding machine
learning: From theory to algorithms. Cambridge University Press.

140

Shalev-Shwartz, Shai, Ohad Shamir, Nathan Srebro, and Karthik Sridha-

ran. 2009. Stochastic convex optimization. In COLT.

Shalev-Shwartz, Shai, Ohad Shamir, Nathan Srebro, and Karthik Sridha-

ran. 2010. Learnability, stability and uniform convergence. The Journal
of Machine Learning Research 11:2635–2670.

Shamir, O. 2016. Without-Replacement Sampling for Stochastic Gra-

dient Methods: Convergence Results and Application to Distributed

Optimization. ArXiv e-prints. 1603.00570.

Song, Shuang, Kamalika Chaudhuri, and Anand D. Sarwate. 2013.

Stochastic gradient descent with differentially private updates. In Glob-
alSIP.

Valiant, Leslie G. 1984. A theory of the learnable. Commun. ACM 27(11):

1134–1142.

Vapnik, Vladimir. 1998. Statistical learning theory. Wiley.

Wang, Yue, Cheng Si, and Xintao Wu. 2015. Regression model fitting

under differential privacy and model inversion attack. In Proceedings
of the twenty-fourth international joint conference on artificial intelligence,
IJCAI 2015, buenos aires, argentina, july 25-31, 2015, 1003–1009.

Winslett, Marianne, Yin Yang, and Zhenjie Zhang. 2012. Demonstration

of damson: Differential privacy for analysis of large data. In 18th IEEE
international conference on parallel and distributed systems, ICPADS 2012,
singapore, december 17-19, 2012, 840–844.

Zhang, Jun, Xiaokui Xiao, Yin Yang, Zhenjie Zhang, and Marianne

Winslett. 2013. Privgene: differentially private model fitting using

genetic algorithms. In SIGMOD.

1603.00570

141

Zhang, Jun, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, and Marianne

Winslett. 2012. Functional mechanism: Regression analysis under differ-

ential privacy. PVLDB.

Zinkevich, Martin. 2003. Online convex programming and generalized

infinitesimal gradient ascent. In ICML.

Zinkevich, Martin, Markus Weimer, Alexander J. Smola, and Lihong Li.

2010. Parallelized stochastic gradient descent. In NIPS.

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Contributions
	Related Work

	Preliminaries
	Machine Learning
	Optimization
	Differential Privacy
	Boolean Analysis

	Differentially Private Stochastic Gradient Descent for in-RDBMS Analytics
	Introduction
	Private SGD
	Empirical Evaluation

	Differential Privacy and Model Inversion Attacks
	Introduction
	Differential Privacy and Stability Theory
	On Applications and Previous Work
	Empirical Study

	A Formal Study of Model Inversion Attacks
	Introduction
	A Methodology for Formalizing MI Attacks
	Black-Box MI Attacks
	White-Box MI Attacks
	Connections with Other Cryptographic Notions

	Conclusion and Future Directions
	References

