
Tuple-oriented Compression for Large-scale
Mini-batch Stochastic Gradient Descent

Fengan Li
† ∗

Lingjiao Chen
†

Yijing Zeng
†

Arun Kumar
§

Xi Wu† ∗
Jeffrey F. Naughton

† ∗
Jignesh M. Patel

†

†
University of Wisconsin-Madison

§
University of California, San Diego

†
{fengan, lchen, yijingzeng, xiwu, naughton, jignesh}@cs.wisc.edu

§
arunkk@eng.ucsd.edu

ABSTRACT
Data compression is a popular technique for improving the

efficiency of data processing workloads such as SQL queries

and more recently, machine learning (ML) with classical

batch gradient methods. But the efficacy of such ideas for

mini-batch stochastic gradient descent (MGD), arguably the

workhorse algorithm of modern ML, is an open question.

MGD’s unique data access pattern renders prior art, includ-

ing those designed for batch gradient methods, less effective.

We fill this crucial research gap by proposing a new loss-

less compression scheme we call tuple-oriented compression

(TOC) that is inspired by an unlikely source, the string/ text

compression scheme Lempel-Ziv-Welch, but tailored toMGD

in a way that preserves tuple boundaries withinmini-batches.

We then present a suite of novel compressed matrix opera-

tion execution techniques tailored to the TOC compression

scheme that operate directly over the compressed data repre-

sentation and avoid decompression overheads. An extensive

empirical evaluation with real-world datasets shows that

TOC consistently achieves substantial compression ratios by

up to 51x and reduces runtimes for MGD workloads by up

to 10.2x in popular ML systems.

CCS CONCEPTS
• Information systems → Data compression; • Com-
puting methodologies →Machine learning.

* These authors are currently at Google.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00

https://doi.org/10.1145/3299869.3300070

KEYWORDS
Large Scale Machine Learning; Mini-batch Stochastic Gradi-

ent Descent; Compression; Lempel-Ziv-Welch

ACM Reference Format:
Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi Wu, Jeffrey

F. Naughton, Jignesh M. Patel. 2019. Tuple-oriented Compression

for Large-scale Mini-batch Stochastic Gradient Descent. In 2019
International Conference on Management of Data (SIGMOD ’19), June
30-July 5, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA,

18 pages. https://doi.org/10.1145/3299869.3300070

1 INTRODUCTION
Data compression is a popular technique for improving the

efficiency of data processing workloads such as SQL queries

over compressed databases [1, 14, 27, 41, 43] and more re-

cently, machine learning with classical batch gradient meth-

ods [14]. However, to the best of our knowledge, there is

no such study of data compression formini-batch stochas-
tic gradient descent (MGD) [15, 20, 31, 33, 45], which is

known for its fast convergence rate and statistical stability,

and is arguably the workhorse algorithm [19, 35] of modern

ML. This research gap is getting more crucial as training

dataset sizes in ML keep growing [10, 36]. For example, if

no compression is used to train ML models on large datasets

that cannot fit into memory capacity or even distributed

memory capacity, disk IO time becomes a significant over-

head [14, 46] for MGD. Figure 1A highlights this issue in

more detail.

Despite the need for a good data compression scheme to

improve the efficiency of MGD workloads, unfortunately,

the main existing data compression schemes designed for

general data files or batch gradient methods are not a good

fit for the data access pattern of MGD. Figure 1B highlights

these existing solutions. For examples, general compres-
sion schemes (GC) such as Gzip and Snappy are designed

for general data files. GC typically has good compression

ratios on mini-batches; however, a mini-batch has to be de-

compressed before any computation can be carried out, and

the decompression overhead is significant [14] for MGD.

https://doi.org/10.1145/3299869.3300070
https://doi.org/10.1145/3299869.3300070

Training
data Size

M
GD

 tr
ai

ni
ng

 ti
m

e

LMC Spilling

D

GC

TOC

LMC

EOC OOM

GC Spilling

ML model

Iterate
until

model
converges

Mini-batches
on disk

Load a mini-
batch (IO)

Matrix operations
(CPU)

A
ML model

Compressed
mini-batches
in memory

Decoded
mini-batch

Matrix operations

Iterate
until

model
converges

LMC, TOC
GC

B

GC

De
co

m
pr

es
sio

n
ov

er
he

ad

(lo
w

er
 is

 b
et

te
r)

TOC
Compression ratio (higher is better)

LMC

C

TOC Spilling

Figure 1: A: If no compression is used to train MLmodels on large datasets that cannot fit into memory, loading a
mini-batch (IO time) from disk can be significantlymore expensive thanmatrix operations (CPU time) performed
on the mini-batch for MGD. B: One typically uses a compression scheme to compress mini-batches so that they
can fit into memory. For general compression schemes (GC), a mini-batch has to be decoded before any compu-
tation can be carried out. For light-weight matrix compression schemes (LMC) and our proposed tuple-oriented
compression (TOC), matrix operations can directly operate on the encoded output without decompression over-
heads. C: TOC has compression ratios comparable to GC. Similar to LMC, matrix operations can directly operate
on the TOC output without decoding the mini-batch. D: Since TOC has good compression ratios and no decom-
pression overheads, it reduces the MGD training time especially on large datasets. For small datasets, TOC has
comparable performance to LMC. Note that MGD training time grows sharply once the data is spilled to disk.

Light-weight matrix compression schemes (LMC) in-
clude classical methods such as compressed sparse row [37]

and value indexing [21] and more recently, a state-of-the-art

technique called compressed linear algebra [14]. LMC is suit-

able for batch gradient methods because the compression

ratio of LMC is satisfactory on the whole dataset and ma-

trix operations can directly operate on the encoded output

without decompression overheads. Nevertheless, the com-

pression ratio of LMC on mini-batches is not as good as GC

in general, which makes it less attractive for MGD.

In this paper, we fill this crucial research gap by proposing

a lossless matrix compression scheme called tuple-oriented
compression (TOC), whose name is based on the fact that

tuple boundaries (i.e., boundaries between columns/rows

in the underlying tabular data) are preserved. Figure 1C

highlights the advantage of TOC over existing compression

schemes. TOC has both good compression ratios on mini-

batches and no decompression overheads for matrix oper-

ations, which are the main operations executed by MGD

on compressed data. Orthogonal to existing works like GC

and LMC, TOC takes inspirations from an unlikely source—a

popular string/text compression scheme Lempel-Ziv-Welch

(LZW) [42, 47, 48]—and builds a compression scheme with

compression ratios comparable to Gzip on mini-batches. In

addition, this paper also proposes a suite of compressed

matrix operation execution techniques, which are tailored

to the TOC compression scheme, that operate directly over
the compressed data representation and avoid decompression

overheads. Even for a small dataset that fits into memory,

these compressed execution techniques are often faster than

uncompressed execution techniques because they can re-

duce computational redundancies in matrix operations. Col-

lectively, these techniques present a fresh perspective that

weaving together ideas from databases, text processing, and

ML can achieve substantial efficiency gains for popular MGD-

based ML workloads. Figure 1D highlights the effect of TOC

in reducing the MGD runtimes, especially on large datasets.

TOC consists of three components at different layers of

abstraction: sparse encoding, logical encoding, and physi-

cal encoding. All these components respect the boundaries

between rows and columns in the underlying tabular data

so that matrix operations can be carried out on the encoded

output directly. Sparse encoding uses the well-known sparse

row technique [37] as a starting point. Logical encoding uses

a prefix tree encoding algorithm, which is based on the LZW

compression scheme, to further compress matrices. Specifi-

cally, we notice that there are sequences of column values

which are repeating across matrix rows. Thus, these repeated

sequences can be stored in a prefix tree and each tree node

represents a sequence. The occurrences of these sequences in

the matrix can be encoded as indexes to tree nodes to reduce

space. Note that we only need to store the encoded matrix

and the first layer of the prefix tree as encoded outputs, as

the prefix tree can be rebuilt from the encoded outputs if

needed. Lastly, physical encoding encodes integers and float

numbers efficiently.

We design a suite of compressed execution techniques

that operate directly over the compressed data representa-

tion without decompression overheads for three classes of

matrix operations. These matrix operations are used byMGD

to train popular ML models such as Linear/Logistic regres-

sion, Support vector machine, and Neural network. These

compressed execution techniques only need to scan the en-

coded table and the prefix tree at most once. Thus, they are

fast, especially when TOC exploits significant redundancies.

For example, right multiplication (e.g., matrix times vector)

and left multiplication (e.g., vector times matrix) can be com-

puted with one scan of the encoded table and the prefix

tree. Lastly, since these compressed execution techniques for

matrix operations differ drastically from the uncompressed

execution techniques, we provide mathematical analysis to

prove the correctness of these compressed techniques.

To summarize, themain contributions of this paper are:

(1) To the best of our knowledge, this is the first work

to study lossless compression techniques to reduce

the memory/storage footprints and runtimes for mini-

batch stochastic gradient descent (MGD), which is the

workhorse algorithm ofmodernML.We propose a loss-

less matrix compression scheme called tuple-oriented

compression (TOC) with compression ratios compara-

ble to Gzip on mini-batches.

(2) We design a suite of novel compressed matrix oper-

ation execution techniques tailored to the TOC com-

pression scheme that directly operate over the com-

pressed data representation and avoid decompression

overheads for MGD workloads.

(3) We provide a formal mathematical analysis to prove

the correctness of the above compressed matrix opera-

tion execution techniques.

(4) We perform an extensive evaluation of TOC compared

to seven compression schemes on six real datasets. Our

results show that TOC consistently achieves substan-

tial compression ratios by up to 51x. Moreover, TOC

reduces MGD runtimes for three popular ML mod-

els by up to 5x compared to the state-of-the-art com-

pression schemes and by up to 10.2x compared to the

encoding methods in some popular ML systems (e.g.,

ScikitLearn [32], Bismarck [15] and TensorFlow [2]).

An integration of TOC into Bismarck also confirmed

that TOC can greatly benefit MGD performance in ML

systems.

The remainder of this paper proceeds as follows: § 2 presents

some required background information. § 3 explains our TOC

compression scheme, while § 4 presents the techniques to ex-

ecute matrix operations on the compressed data. § 5 presents

the experimental results and § 6 discusses TOC extensions.

§ 7 presents related work, and we conclude in § 8.

2 BACKGROUND
In this section, we discuss two important concepts: ML train-

ing in the generalized setting and data compression.

2.1 Machine Learning Training
2.1.1 Empirical Risk Minimization. We begin with a descrip-

tion of ML training in the generalized setting based on stan-

dard ML texts [39, 40]. Formally, we have a hypothesis space

H , an instance set Z, and a loss function ℓ : H ×Z 7→ R.
Given a training set S = {z1, z2, ..., zn} which are n i.i.d.

draws based on a distribution D on Z, and a hypothesis

h ∈ H , our goal is to minimize the empirical risk over the

training set S defined as

LS(h) =
1

n

n∑
i=1

ℓ(h, zi). (1)

Many ML models including Logistic/Linear regression,

Support vector machine, and Neural network fit into this

generalized setting [40].

2.1.2 Gradient Descent. ML training can be viewed as the

process to find the optimal
ˆh ∈ H such that

ˆh = argminLS(h).
This is essentially an optimization problem, and gradient de-

scent is a common and established class of algorithms for

solving this problem. There are three main variants of gra-

dient descent: batch gradient descent, stochastic gradient

descent, and mini-batch stochastic gradient descent.

Batch Gradient Descent (BGD). BGD uses all the training

data to compute the gradient and update h per iteration.

Stochastic Gradient Descent (SGD). SGD uses a single

tuple to compute the gradient and update h per iteration.

Mini-batch Stochastic Gradient Descent (MGD). MGD

uses a small batch of tuples (typically tens or hundreds of

tuples) to compute the gradient and update h per iteration:

h(t) ← h(t−1) − λ
1

|Bt |

∑
z∈Bt

∂ℓ(h, z)

∂h
, (2)

where Bt is the current t-th mini-batch we visit, z is a tuple
from Bt , and λ is the learning rate.

Note that MGD can cover the spectrum of gradient descent

methods by setting the mini-batch size |Bt |. For examples,

MGD morphs into SGD and BGD by setting |Bt | = 1 and

|Bt | = |S|, respectively.
MGD gains its popularity due to its fast convergence rate

and statistical stability. It typically requires fewer epochs (the

whole pass over a dataset is an epoch) to converge than BGD

and is more stable than SGD [35]. Figure 2 illustrates the

optimization efficiencies of these gradient descent variants,

among which MGD with hundreds of rows in a mini-batch

achieves the best balance between fast convergence rate and

statistical stability. Thus, in this paper, we focus on MGD

with mini-batch size ranging from tens to hundreds of tuples.

0 200 400 600 800 1000
of epochs

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Efficiencies of Optimization Methods
BGD
SGD
MGD (250 rows)
MGD-20%
MGD-50%
MGD-80%

Figure 2: Optimization efficiencies of BGD, SGD, and
MGD for training a neural network with one hidden
layer (no convolutional layers) on Mnist. MGD (250
rows) has 250 rows in a mini-batch. MGD-20%, MGD-
50%, and MGD-80% has 20, 50, and 80 percent of rows
of the whole dataset in each mini-batch, respectively.

2.1.3 Shuffle Once v.s. Shuffle Always. The random sampling

for tuples in SGD/MGD is typically done without replace-

ment, which is achieved by shuffling the dataset before an

epoch [6]. However, shuffling data at every epoch (shuffle

always) is expensive and incurs a high overhead. Thus, we

follow the standard technique of shuffling once [6, 15, 45]

(i.e., shuffling the data once upfront) to improve the ML

training efficiency.

2.1.4 Core Matrix Operations for Gradient Descent. The core
operations, which dominate the CPU time, for using gradient

descent to optimize many ML models (e.g., Linear/Logistic

regression, Support vector machine, and Neural network)

are matrix operations [14]. We illustrate this point using an

example of Linear regression, and summarize the core matrix

operations for these ML models in Table 1.

Example. Consider a supervised classification algorithm

Linear regression whereZ = X × Y, X ⊆ Rd , Y = R,H =

Rd , and ℓ(h, z) = 1

2
(y−xTh)2. LetmatrixA = [xT

1
;xT

2
; ...;xT

|B |],

vector Y = [y1;y2; ...;y |B |], then the aggregated gradients of

the loss function is:∑
z∈B

∂ℓ(h, z)

∂h
=

∑
(x ,y)∈B

(xTh − y)x = ((Ah − Y)TA)T . (3)

Thus, there are two core matrix operations—matrix times

vector and vector times matrix—to compute Equation 3.

2.2 Data Compression
Data compression, also known as source coding, is an im-

portant technique to reduce data sizes. There are two main

components in a data compression scheme, an encoding pro-

cess that encodes the data into coded symbols (hopefully

Table 1: The core matrix operations when using gra-
dient descent to optimize popular ML models. A =
[xT

1
;xT

2
; ...;xT

|B |] is a batch of data for updating models
where (xi ,yi) ∈ B. v and M are either ML model pa-
rameters or intermediate results for computing gradi-
ents.We use logistic loss for Logistic regression, hinge
loss for Support vector machine, and mean squared
loss for Linear regression and Neural network. For the
sake of simplicity, our neural network structure has a
feed forward structure with a single hidden layer.

ML models A · v v · A A ·M M · A

Linear regression ✓ ✓
Logistic regression ✓ ✓
Support vector machine ✓ ✓
Neural network ✓ ✓

with fewer bits), and a decoding process that reconstructs

the original data from the compressed representation.

Based on whether the reconstructed data differs from the

original data, data compression schemes usually can be clas-

sified into lossless compression or lossy compression. In this

paper, we propose a lossless compression scheme called tuple-

oriented compression (TOC) which is inspired by a classi-

cal lossless string/text compression scheme that has both

gained academic influence and industrial popularity, Lempel-

Ziv-Welch [42, 47, 48]. For examples, Unix file compression

utility
1
and GIF [44] image format are based on LZW.

3 TUPLE-ORIENTED COMPRESSION
In this section, we introduce our tuple-oriented compression

(TOC). The goal of TOC is to (1) compress a mini-batch as

much as possible and (2) preserve the row/column bound-

aries in the underlying tabular data so that matrix operations

can directly operate on the compressed representation with-

out decompression overheads. Following the popular sparse

row technique [37], we use sparse encoding as a starting

point, and introduce two new techniques: logical encoding

and physical encoding. Figure 3 demonstrates a running

example of the encoding process.

For sparse encoding, we ignore the zero values and then

prefix each non-zero value with its column index. We call the

value with its column index prefix as column_index:value pair.
For example, in Figure 3, tuple R2 - [1.1, 2, 3, 0] is encoded as

[1:1.1, 2:2, 3:3], where 1:1.1 is a column_index:value pair. As

a result of sparse encoding, the original table (A) in Figure 3

is converted to the sparse encoded table (B).

1
ncompress.sourceforge.net

1 2 3 4

R1 1.1 2 3 1.4

R2 1.1 2 3 0

R3 0 1.1 3 1.4

R4 1.1 2 0 0

1 2 3 4 5

6 7 8 10

Original Table (A)

Sparse Encoded Table (B)
Encoded Table (D)

Step2 :Logical
Encoding

R1 1:1.1 2:2 3:3 4:1.4
R2 1:1.1 2:2 3:3
R3 2:1.1 3:3 4:1.4
R4 1:1.1 2:2

R1 1 2 3 4
R2 6 3
R3 5 8
R4 6

Step1: Sparse
Encoding

Root

1:1.1 2:2 3:3 4:1.4 2:1.1

Prefix Tree (C)

3:34:1.43:32:2

3:3

1 2 3 4 6 3 5 8 6

0 4 6 8
Step3 :Physical

Encoding
tuple start
indexes

(# of integers, # of bytes per integer)

Step3 :Physical
Encoding

1 2 3 4 2
column
indexes

0 1 2 3 0 value
indexes

1.1 2 3 1.4 values

5 1

5 1

9 1

4 1

tree node
indexes

0
Column_index:value pairs in the
first layer of the prefix tree (I)

9

Figure 3: A running example of the TOC encoding process. TOC has three components: sparse encoding, logical
encoding, and physical encoding. The red dotted lines connect these components. Sparse encoding encodes the
original table A to the sparse encoded table B. Logical encoding encodes B to the encoded table D. It also outputs
I, which is the column_index:value pairs in the first layer of the prefix tree C. Physical encoding encodes I and D
to physical bytes efficiently.

3.1 Logical Encoding
The sparse encoded table (e.g., B in Figure 3) can be further

compressed logically. The key idea is that there are repeating

sequences of column_index:value pairs across tuples in the

table. For example, R2 and R4 in the table B both have the

same sequence [1:1.1, 2:2]. Thus, these occurrences of the

same sequence can be encoded as the same index pointing to

a dictionary entry, which represents the original sequence.

Since many of these sequences have common prefixes, a

prefix tree is used to store all the sequences. Finally, each

original tuple is encoded as a vector of indexes pointing to

prefix tree nodes.

We present the prefix tree structure and its APIs in § 3.1.1.

In § 3.1.2, we present the actual prefix tree encoding algo-

rithm, including how to dynamically build the tree and en-

code tuples. The comparison between our prefix tree encod-

ing algorithm and LZW is presented in § 3.1.3.

3.1.1 Prefix Tree Structure and APIs. Each node of the prefix

tree has an index. Except for the root node, each node stores a

column_index:value pair as its key. Each node also represents

a sequence of column_index:value pairs, which are obtained

by concatenating the keys from the prefix tree root to the

node itself. For example, in the prefix tree C in Figure 3,

the left bottom tree node has index 9, stores key 3:3, and

represents the sequence of column_index:value pairs [1:1.1,

2:2, 3:3].

The prefix tree supports two main APIs: AddNode and

GetIndex.

• n′ = AddNode(n,k). This API creates a new prefix

tree node which has key k and is a child of the tree

node with index n. It also returns the index of the

newly created tree node in n′, which is assigned from

a sequence number starting from 0.

• n′ = GetIndex(n,k). This API looks up the tree node

which has key k and is a child of the tree node with

index n. It also returns the index of the found tree node
in n′. If there is no such node, it returns -1.

The implementation of AddNode is straightforward. The
implementation of GetIndex is more involved, and we use

a standard technique reported in [7]. In essence, for each

tree node, we create a hash map mapping from its child node

keys to its child node indexes.

3.1.2 Prefix Tree Encoding Algorithm. Our prefix tree en-

coding algorithm encodes the sparse encoded table (e.g., B
in Figure 3) to an encoded table (e.g., D in Figure 3). Dur-

ing the encoding process, we build a prefix tree (e.g., C in

Figure 3) and each original tuple is encoded as a vector of

indexes pointing to prefix tree nodes. Algorithm 1 presents

the pseudo-code of the algorithm. Figure 3 presents a run-

ning example of executing the algorithm and encoding table

B to table D.
The prefix tree encoding algorithm has two main phases.

In phase I (line 5 to line 8 of Algorithm 1), we initialize the

prefix tree with all the unique column_index:value pairs in

the sparse encoded table as the children of the root node.

In phase II (line 9 to line 17 of Algorithm 1), we leverage the

repeated sequences of the tuples so that the same sequence,

for example R2 and R4 in Figure 3 both have the sequence

[1:1, 2:2], is encoded as the same index to the prefix tree

node. At its heart, we scan all the tuples to detect if part of

the tuple can match a sequence that already exists in the

prefix tree and build up the prefix tree along the way. We

use the function LongestMatchFromTree in Algorithm 1,

to find the longest sequence in the prefix tree that matches

the sequence in the tuple t starting from the position i . The
function returns the tree node index of the longest match in

n, and the next matching starting position in j. If j , len(t),
we add a new node to the prefix tree which is the child

of the tree node with index n and has key t[j] to capture

this new sequence in the tuple t. In this way, later tuples

can leverage this new sequence. Note that the longest match

found is at least of length one because we store all the unique

column_index:value pairs as the children of the root node in

phase I.

Our prefix tree encoding and LZW are both linear algo-

rithms in the sense that each input unit is read at most twice

and the operation on each input unit is constant. So the time

complexity of Algorithm 1 is O(|B|), where |B| is the number

of column_index:value pairs in the sparse encoded table B.

3.1.3 Comparisons with Lempel-Ziv-Welch (LZW). Our pre-
fix tree encoding algorithm is inspired by the classical com-

pression scheme LZW. However, a key difference between

LZW and our algorithm is that we preserve the row and

column boundaries in the underlying tabular data, which

is crucial to directly operate matrix operations on the com-

pressed representation. For examples, our algorithm encodes

each tuple separately (although the dictionary is shared) to

respect the row boundaries, and the compression unit is a

column_index:value pair to respect the column boundaries.

In contrast, LZW simply encodes a blob of bytes without

preserving any structure information. The reason for that

is LZW was invented primarily for string/text compression.

There are other several noticeable differences between our

algorithm and LZW, which are summarized in Table 2.

Table 2: Differences between LZW and our prefix tree
encoding. c-v stands for column-index:value.

LZW Ours
Input bytes sparse encoded table

Encode unit 8 bits c-v pair

Tree init. all values of 8 bits all unique c-v pairs

Tuple bound. lost preserved

Output a vector of codes encoded table & pre-

fix tree first layer

3.2 Physical Encoding
The output of the logical encoding (i.e., I and D in Figure 3)

can be further encoded physically to reduce sizes.We use two

simple techniques—bit packing [26] and value indexing [21]—

Algorithm 1 Prefix Tree Encoding Algorithm

1: function PrefixTreeEncode(B)
2: inputs: sparse encoded table B
3: outputs: column_index:value pairs in the first layer

of the prefix tree I and encoded table D
4: Initialize C with a root node with index 0.

5: for each tuple t in B do ▷ phase I: initialization
6: for each column_index:value pair t[i] in t do
7: if C.GetIndex(0, t[i]) = -1 then
8: C.AddNode(0, t[i])
9: for each tuple t in B do ▷ phase II: encoding
10: i ← 0 ▷ set the matching starting position

11: D[t]← [] ▷ initialize as an empty vector

12: while i < len(t) do
13: (n, j) ← LongestMatchFromTree(t, i , C)
14: D[t].append(n)
15: if j < len(t) then
16: C.AddNode(n, t[j])
17: i ← j

18: I← first_layer(C)
19: return(I, D)
20:

21: function LongestMatchFromTree(t, i , C)
22: inputs: input tuple t, matching starting position i

in t, and prefix tree C
23: outputs: index of the tree node of the longest match

n and next matching starting position j
24: j ← i
25: n′← C.GetIndex(0, t[j]) ▷ matching 1st element

26: do
27: n ← n′

28: j ← j + 1 ▷ try matching the next element

29: if j < len(t) then
30: n′← C.GetIndex(n, t[j]) ▷ return -1 if such

a tree node does not exist

31: else
32: n′← −1 ▷ reaching the end of tuple t
33: while n′ , −1
34: return(n, j)

that can reduce sizes without incurring significant overheads

when accessing the original values.

We notice that some information in I and D can be stored

using arrays of non-negative integers, and these integers

are typically small. For example, the maximal column in-

dex in I of Figure 3 is 4, so 1 byte is enough to encode a

single integer. Bit packing is used to encode these arrays of

small non-negative integers efficiently. Specifically, we use

⌈ 1
8
∗ log

maximal_integer+1

2
⌉ bytes to encode each non-negative

integer in an array. Each encoded array has a header that

tells the number of integers in the array and the number of

bytes used per integer. More advanced encoding methods

such as Varint [12] and SIMD-BP128 [26], can also be used,

and point to interesting directions for future work.

Value indexing is essentially a dictionary encoding tech-

nique. That is, we store all the unique values (excluding

column indexes) in the column_index:value pairs (e.g., I in
Figure 3) in an array. Then, we replace the original values

with the indexes pointing to the values in the array.

Figure 3 illustrates an example of howwe encode the input

(e.g., I and D) to physical bytes. For I, the column indexes

are encoded using bit packing, while the values are encoded

using value indexing. The value indexes from applying value

indexing are also encoded using bit packing. For D, we con-
catenate the tree node indexes from all the tuples and encode

them all together using bit packing. We also encode the tuple

starting indexes using bit packing.

4 MATRIX OPERATION EXECUTION
In this section, we introduce how to execute matrix opera-

tions on the TOC output. Most of the operations can directly

operate on the compressed representation without decoding

the original matrix. This direct execution avoids the tedious

and expensive decoding process and reduces the runtime to

execute matrix operations and MGD.

Let A be a TOC compressed matrix, c be a scalar, v/M be

an uncompressed vector/matrix respectively, we discuss four

common classes of matrix operations:

(1) Sparse-safe element-wise [14] operations (e.g., A. ∗ c
and A.2).

(2) Right multiplication operations (e.g., A · v and A ·M).

(3) Left multiplication operations (e.g., v · A andM · A).
(4) Sparse-unsafe element-wise operations [14] (e.g.,A.+c

and A +M).

Informally speaking, sparse-safe operation means that zero

elements in the matrix remain as zero after the operation;

sparse-unsafe operation means that zero elements in the

matrix may not be zero after the operation.

Figure 4 gives an overview of how to execute different

matrix operations on the TOC output. The first three classes

of operations can directly operate over the compressed rep-

resentation without decoding the original matrix. The last

class of operations needs to decode the original matrix. How-

ever, it is less likely to be used for training machine learning

models because it changes the input data.

4.1 Shared Operators
In this subsection, we discuss some shared operators for

executing matrix operations on the TOC output.

Sparse-safe
(!.∗ $; !.&)

Matrix
Operations

Scan (

Left mul.
(* ∗ !; + ∗ !)

Scan ,
Build -.

Scan -.

Right mul.
(! ∗ *; ! ∗ +)

Build -.

Scan -.

Scan ,

Operators
on TOC
Outputs

Decode /
Build -.

Apply matrix
ops on 0

Sparse-unsafe
(!.+ $; ! + +)

Decoding A? NO NO NO YES

Decode 0

General
Linear Models

Neural
Network

ML
Workloads

Figure 4: An overview of how to execute different ma-
trix operations on the TOC output. For sparse-safe
element-wise operations, right multiplication opera-
tions, and left multiplication operations, we can ex-
ecute them on the TOC output directly. For sparse-
unsafe element-wise operations, we need to fully de-
code the input A and then apply the operation on A.

4.1.1 Access Values of I andD From Physical Bytes. As shown
in Figure 4, executing many matrix operations requires scan-

ning I or D, which are encoded to physical bytes using bit

packing and value indexing as explained in § 3.2. Thus, we

briefly discuss how to access values of I andD from encoded

physical bytes.

To access a non-negative integer encoded using bit pack-

ing, one can simply seek to the starting position of the integer,

and cast its bytes to uint_8, uint_16, or uint_32 respectively.

Unfortunately, most programming languages do not support

uint_24 natively. Nevertheless, one can copy the bytes into

an uint_32 and mask its leading byte as zero.

To access values encoded using value indexing, one can

look up the array which stores the unique values using the

value indexes.

4.1.2 Build Prefix Tree For Decoding. As shown in Figure 4,

executing all matrix operations except for sparse-safe element-

wise operations needs to build the prefix tree C′, which is a

simplified variant of the prefix tree C built during encoding.

Each node in C′ has the same index and key with the node

in C. The difference is that each node in C′ stores the index
to its parent, but it does NOT store indexes to its children.

Table 3 demonstrates an example of C′.

Table 3: An example of C′, which is a simplified vari-
ant of C in Figure 3. Each node in C′ only stores the
index to its parent but NOT indexes to its children.

Index 0 1 2 3 4 5 6 7 8 9 10

Key 1:1.1 2:2 3:3 4:1.4 2:1.1 2:2 3:3 4:1.4 3:3 3:3

ParentIndex 0 0 0 0 0 1 2 3 6 5

Algorithm 2 presents how to build C′. There are two main

phases in Algorithm 2. In phase I,C′ and F are both initialized
by I, where F stores the first column_index:value pair of the

sequence represented by each tree node.

In phase II, we scanD to buildC′mimicking howC is built

in Algorithm 1. From line 11 to line 13 of Algorithm 2, we

add a new prefix tree node indexed by idx_seq_num. More

specifically, the new tree node is a child of the tree node

indexed by D[i][j] (line 11), the first column_index:value

pair of the sequence represented by the new tree node is the

same with its parent (line 12), and the key of the new tree

node is the first column_index:value pair of the sequence

represented by the next tree node indexed byD[i][j+1] (line
13).

Algorithm 2 Build Prefix Tree C′

1: function BuildPrefixTree(I, D)
2: inputs: column_index:value pairs in the first layer

of the prefix tree I and encoded table D
3: outputs: A prefix tree used for decoding C′

4: for i ← 1 to len(I) do ▷ phase I: initialize with I
5: C′[i].key← I[i − 1]
6: C′[i].parent← 0

7: F[i] ← I[i − 1] ▷ F stores the first

column_index:value pair of the sequence of the node

8: idx_seq_num← len(I) + 1

9: for i ← 0 to len(D) - 1 do ▷ phase II: build C′

10: for j ← 0 to len(D[i]) -2 do ▷ skip last element

11: C′[idx_seq_num].parent← D[i][j]
12: F[idx_seq_num]← F[D[i][j]]
13: C′[idx_seq_num].key← F[D[i][j + 1]]
14: idx_seq_num← idx_seq_num + 1

15: return (C′)

4.2 Sparse-safe Element-wise Operations
To execute sparse-safe element-wise operations (e.g., A. ∗ c
andA.2) on the TOC output directly, one can simply scan and

modify I because all the unique column_index:value pairs in

A are stored in I. Algorithm 3 demonstrates how to execute

matrix times scalar operation (i.e., A. ∗ c) on the TOC output.

Algorithms for other sparse-safe element-wise operations

are similar.

4.3 Right Multiplication Operations
We first do some mathematical analysis to transform the

uncompressed execution of right multiplication operations

to the compressed execution that operates directly on the

TOC output without decoding the original table. The analysis

also proves the algorithm correctness since the algorithm

Algorithm 3 Execute matrix times scalar operation (i.e.,

A. ∗ c) on the TOC output.

1: functionMatrixTimesScalar(I, c)
2: inputs: column_index:value pairs in the first layer

of the prefix tree I and a scalar c

3: outputs: the modified I
4: for i ← 0 to len(I) -1 do
5: I[i].value← I[i].value * c
6: return(I)

follows the transformed form directly. Then, we demonstrate

the detailed algorithm. In the rest of this subsection, we use

A · v as an example. Due to the limit of space, we put the

result of A ·M (similar to A · v) in Appendix C.

Theorem 1. Let A ∈ ℜn×m , v ∈ ℜm×1, D be the output of
TOC on A, C′ be the prefix tree built for decoding, C′[i].seq
be the sequence of the tree node defined in § 3.1.1, C′[i].key
be the key of the tree node defined in § 4.1.2, and C′[i].parent
be the parent index of the tree node defined in § 4.1.2. Note
that C′[i].key and C′[i].seq are both sparse representations of
vectors (i.e., C′[i].key ∈ ℜ1×m and C′[i].seq ∈ ℜ1×m). Define
function F (x) : ℵ → ℜ to be

F (x) = C′[x].seq · v, x = 1, 2, ..., len(C′) − 1. (4)

Then, we have

A[i, :] · v =

len(D[i ,:])−1∑
j=0

F (D[i][j]), i = 0, 1, ...,n − 1 (5)

and

C′[i].seq = C′[i].key + C′[C′[i].parent].seq,

i = 1, 2, ..., len(C′) − 1. (6)

Proof. See Appendix A.1 □

Remark on Theorem 1. A · v can be directly executed on

the TOC output following Equation 5 by scanning C′ first
and scanning D second. The detailed steps are demonstrated

in Algorithm 4.

First, we scan C′ to compute F function defined in Equa-

tion 4 (lines 5-7 in Algorithm 4). The dynamic programming

technique is used following Equation 6. Specifically, we use

H[i] to remember the computed value of F (i). We compute

each H[i] as the sum of C′[i].key · v and H[C′[i].parent],
which is computed already.

Second, we scan D to compute A · v and store it in R
following Equation 5 (lines 8-11 in Algorithm 4). For each

D[i][j], we simply add H[D[i][j]] to R[i].

Algorithm 4 Execute matrix times vector operation (i.e.,

A · v) on the TOC output.

1: functionMatrixTimesVector(D, I, v)
2: inputs: column_index:value pairs in the first layer

of the prefix tree I, encoded table D, and vector v
3: outputs: the result of A · v in R
4: C′← BuildPrefixTree(I, D)
5: H← −→0 ▷ initialize as a zero vector

6: for i = 1 to len(C′)-1 do ▷ scan C′ to compute H
7: H[i]← C′[i].key ·v + H[C′[i].parent]
8: R← −→0 ▷ initialize as a zero vector

9: for i = 0 to len(D)-1 do ▷ scan D to compute R
10: for j = 0 to len(D[i ,:])-1 do
11: R[i]← R[i] + H[D[i][j]]
12: return(R)

4.4 Left Multiplication Operations
We first give the mathematical analysis and then present the

detailed algorithm. The reason for doing so is similar to that

is given in § 4.3. Due to the space limit, we only demonstrate

the result of v · A and put the result ofM · A to Appendix C.

Theorem 2. Let A ∈ ℜn×m , v ∈ ℜ1×n , D be the output of
TOC on A, C′ be the prefix tree built for decoding, C′[i].seq
be the sequence of the tree node defined in § 3.1.1, C′[i].key
be the key of the tree node defined in § 4.1.2, and C′[i].parent
be the parent index of the tree node defined in § 4.1.2. Note
that C′[i].key and C′[i].seq are both sparse representations of
vectors (i.e., C′[i].key ∈ ℜ1×m and C′[i].seq ∈ ℜ1×m). Define
function G(x) : ℵ → ℜ to be

G(x) =
∑

D[i , j]=x ,∀i ∈ℵ,∀j ∈ℵ

v[i], x = 1, 2, ..., len(C′) − 1. (7)

Then, we have

v · A =

len(C′)−1∑
i=1

C′[i].seq · G(i). (8)

Proof. See Appendix A.2. □

Remark on Theorem 2. We can compute v · A following

Equation 8 by simply scanning D first and scanning C′ sec-
ond. Algorithm 5 presents the detailed steps. First, we scanD
to compute function G defined in Equation 7. Specifically, we

initialize H as a zero vector, and then add v[i] to H[D[i][j]]
for each D[i][j] (lines 6-8 in Algorithm 5). After this step is

done, G(i) = H[i], i = 1, 2, . . . , len(C′) − 1.
Second, we scan C′ backwards to actually compute v · A

and store it in R following Equation 8 (lines 10-12 in Al-

gorithm 5). The dynamic programming technique is used

following Equation 6. Specifically, for each C′[i], we add

C′[i].key · H[i] to R and add H[i] to H[C′[i].parent].

Algorithm 5 Execute vector times matrix operation (i.e.,

v · A) on the TOC output.

1: function VectorTimesMatrix(D, I, v)
2: inputs: column_index:value pairs in the first layer

of the prefix tree I, encoded table D, and vector v
3: outputs: the result of v · A in R
4: C′← BuildPrefixTree(I, D)
5: H← −→0 ▷ initialize as a zero vector

6: for i = 0 to len(D)-1 do ▷ scan D to compute H
7: for j = 0 to len(D[i ,:]) -1 do
8: H[D[i][j]]← v[i] + H[D[i][j]]
9: R← −→0 ▷ initialize as a zero vector

10: for i = len(C′) -1 to 1 do ▷ scan C′ to compute R
11: R← R + C′[i].key · H[i]
12: H[C′[i].parent]← H[C′[i].parent] + H[i]

13: return(R)

4.5 Sparse-unsafe Element-wise
Operations

For sparse-unsafe element-wise operations (e.g., A. + c and
A +M), we need to fully decode A first and then execute the

operations on A. Although this process is slow due to the

tedious decoding step, fortunately, sparse-unsafe element-

wise operations are less likely to be used for training ML

models because the input data is changed. Due to the space

limit, we put the detailed algorithm 6 to Appendix C.

4.6 Time Complexity Analysis
We give detailed time complexity analysis of different matrix

operations except for A · M and M · A, which we put to

Appendix B for brevity. For A. ∗ c , we only need to scan I, so
the time complexity is O(|I|).

For A ·v and v ·A, we need to build C′ , scan C′, and scan

D. As shown in Algorithm 2, building C′ needs to scan I and
D, and |C′ | = |I| + |D|. So the complexity of building and

scanning C′ are O(|I| + |D|). Overall, the complexity of A · v
andv ·A are O(|I| + |D|). This indicates that the computational

redundancy incurred by the data redundancy is generally

avoided by TOC matrix execution algorithms. Thus, theo-

retically speaking, TOC matrix execution algorithms have

good performance when there are many data redundancies.

For A. + c , we need to decompress A first. Similar to LZW,

the decompression of TOC is linear in the sense that each

element has to be outputted and the cost of each output

element is constant. Thus, the complexity of decompressing

A is O(|A|). Overall, the complexity of A. + c is also O(|A|).

5 EXPERIMENTS
In this section, we answer the following questions:

(1) Can TOC compress mini-batches effectively?

(2) Can common matrix operations be executed efficiently

on TOC compressed mini-batches?

(3) Can TOC reduce the end-to-end MGD runtimes signifi-

cantly for training common machine learning models?

Summary of Answers. We answer these questions posi-

tively by conducting extensive experiments. First, on datasets

with moderate sparsity, TOC reduces mini-batch sizes no-

tably with compression ratios up to 51x. Compression ra-

tios of TOC are up to 3.8x larger than the state-of-the-art

light-weight matrix compression schemes, and comparable

to general compression schemes such as Gzip. Second, the

matrix operation runtime of TOC is comparable to the light-

weight matrix compression schemes, and up to 20,000x better

than the state-of-the-art general compression schemes. Third,

TOC reduces the end-to-end MGD runtimes by up to 1.4x,

5.6x, and 4.8x compared to the state-of-the-art compression

schemes for training Neural network, Logistic regression,

and Support vector machine, respectively. TOC also reduces

the MGD runtimes by up to 10.2x compared to the best en-

coding methods used in popular machine learning systems:

Bismarck, ScikitLearn, and TensorFlow.

Datasets. We use six real-world datasets. The first four

datasets we chose have moderate sparsity, which is a typical

phenomenon for enterprise machine learning [4, 17]. Rcv1

and Deep1Billion represent the extremely sparse and dense

dataset respectively. Table 4 lists the dataset statistics.

Table 4: Dataset statistics. Except for Deep1Billion,
which is in the binary format, we report the sizes of
the datasets stored in the text format. Sparsity is de-
fined as # of non zero values

of total values .

Dataset Dimensions Size Sparsity
US Census [14] 2.5 M * 68 0.46 GB 0.43

ImageNet [14] 1.2 M * 900 2.8 GB 0.31

Mnist8m [14] 8.1 M * 784 11.3 GB 0.25

Kdd99 [28] 4 M * 42 1.6 GB 0.39

Rcv1 [3] 800 K * 47236 0.96 GB 0.0016

Deep1Billion [5] 1 B * 96 475 GB 1.0

Compared Methods.We compare TOC with one baseline

(DEN), four light-weight matrix compression schemes (CSR,

CVI, DVI, and CLA), and two general compression schemes

(Snappy and Gzip). A brief summary of these methods is as

follows:

(1) DEN: This is the standard dense binary format for

dense matrices. We store the matrix row by row and

each value is encoded using IEEE-754 double format.

Categorical features are encoded using the standard

one-hot (dummy) encoding [16].

(2) CSR: This is the standard compressed sparse row en-

coding for sparse matrices. We store the matrix row by

row. For each row, we only store the non-zero values

and associated column indexes.

(3) CVI: This format is also called as CSR-VI [14, 21]. We

first encode the matrix using CSR and then encode

non-zero values via the value indexing in Section 3.2.

(4) DVI: We first encode the matrix using DEN and then

encode the values via the value indexing in Section 3.2.

(5) CLA: This method [14] divides thematrix into different

column-groups and compresses each column-group

column-wisely. Note that matrix operations can be

executed on compressed CLA matrices directly.

(6) Snappy:We compress the serialized bytes of DENusing

Snappy.

(7) Gzip: We use Gzip to compress the serialized bytes of

DEN.

Machine and System Setup. All experiments were run on

Google cloud
2
using a typical machine with a 4 core, 2.2

GHz Intel Xeon CPU, 15GB RAM (unless otherwise spec-

ified), and OS Ubuntu 14.04.1. We did not choose a more

powerful machine because of the higher cost. For example,

our machine costs $131 per month, while a machine with

4 cores and 180 GB RAM costs $912 per month. Thus, our

techniques can save costs for ML workloads, especially in

such cloud settings.

Our techniques were implemented in C++ and compiled

using g++ 4.8.4 with the flag O3 optimization. We also com-

pare with four machine learning systems: ScikitLearn 0.19.1
3
,

Systemml 1.3.0
4
, Bismarck 2.0

5
, and TensorFlow

6
. Further-

more, we integrate TOC into Bismarck to realize fair com-

parison. Due to the space limit, we put the integration detail

into Appendix D.1.

5.1 Compression Ratios
Setup.We are not aware of a first-principle way in literature

to set mini-batch sizes (# of rows in a mini-batch). In practice,

the mini-batch size typically depends on system constraints

(e.g. number of CPUs) and is set to some number ranging

from 10 to 250 [30]. Thus, we tested five mini-batch sizes

50, 100, 150, 200, and 250, which cover the most common

use cases. Compression ratio is defined as the uncompressed

mini-batch size (encoded using DEN) over the compressed

2
https://cloud.google.com/

3
http://scikit-learn.org/stable/

4
https://systemml.apache.org/

5
http://i.stanford.edu/hazy/victor/bismarck/

6
https://www.tensorflow.org/

100 200
of rows

0

5

10

15

C
om

pr
es

si
on

 r
at

io
s Census

100 200
of rows

0

5

10

15 Imagenet

100 200
of rows

0

5

10

15

Mnist

100 200
of rows

0

20

40

60
Kdd99

CSR CVI DVI Snappy Gzip TOC (ours) CLA

100 200
of rows

0

100

200

300

400

Rcv1

100 200
of rows

0.0

0.5

1.0

Deep1Billion

Figure 5: Compression ratios of different methods on mini-batches with varying sizes.

mini-batch size. We implemented DEN, CSR, CVI, and DVI

by ourselves but use CLA from Systemml and Gzip/Snappy

from standard libraries. We tested mini-batches from all the

real datasets with the sizes mentioned above.

Overall Results. Figure 5 presents the overall results. For
the very sparse dataset Rcv1, CSR is the best encodingmethod

and TOC’s performance is similar to CSR. For the very dense

dataset Deep1Billion, which does not contain repeated subse-

quences of column values, Gzip is the best method but it only

achieved a marginal 1.15x compression ratio. CSR and TOC

have similar performance because of the sparse encoding.

For the other 4 datasets with moderate sparsity, TOC has

larger compression ratios than all the other methods except

on Mnist, where TOC is inferior to Gzip. The main reason is

that Mnist does not contain many repeated subsequences of

column values that TOC logical encoding can exploit, this is

also verified by the ablation study in Figure 11.

Overall, TOC is suitable for datasets of moderate sparsity,

which are commonly used datasets in enterprise ML. TOC is

not suitable for very sparse datasets and very dense datasets

that do not contain repeated subsequences of columns values.

Note that these datasets are challenging for other compres-

sion methods too. Nevertheless, one can simply test TOC on

a mini-batch sample and figure out if TOC is suitable for the

dataset.

Ablation Study and Large Mini-batch Sizes. Due to the

limit of space, we put these results to Appendix D.3.

5.2 Matrix Operation Runtimes
Setup. We tested three classes of matrix operations: sparse-

safe element-wise operation (A · c), left multiplication opera-

tions (v · A andM · A), and right multiplication operations

(A ·v andA ·M), where c is a scalar,v is an uncompressed vec-

tor,M is an uncompressed matrix, and A is the compressed

mini-batch. We set mini-batch size as 250 (results for other

mini-batch sizes are similar). Figure 6 presents the results.

Sparse-safe Element-wise Operations (A · c). In general,

DVI, CVI, and TOC are fastest methods. This shows the

effectiveness of value indexing [21] which is used by all

these methods. It is noteworthy that TOC can be four orders

of magnitude faster than Gzip and Snappy (e.g. on Imagenet).

The slowness of these general compression schemes is caused

by their significant decompression overheads.

Right Multiplication Operations (A · v and A · M). For
A · v , CSR/DEN are the best methods for Rcv1/Deep1Billion

due to their extreme sparsity/density respectively. For the re-

maining datasets of moderate sparsity, DEN, CSR, CVI, DVI,

and TOC are fastest methods. CLA and general compression

schemes like Snappy and Gzip are much slower. We do see

that TOC is 2-3x slower than CSR on dataset Imagenet and

Mnist. There are two main reasons for the slowness. First,

building the prefix tree C′ in TOC takes extra time. Second,

TOC compression ratios over CSR compression ratios are

relatively small on these datasets, which render the compu-

tational redundancies exploited by TOC on these datasets

also smaller.

For A · M , we set the row size of M as 20. TOC is con-

sistently the fastest on all the datasets except for Rcv1 and

Deep1Billion due to its extreme sparsity/density. CLA in

Systemml does not support A ·M yet, thus CLA is excluded.

Left Multiplication Operations (v · A and M · A). The
results of left multiplication operations are similar to right

multiplication operations. Thus, we leave them for brevity.

Summary. Overall, TOC achieves the best runtime perfor-

mance on operations:A ·c ,A ·M , andM ·A. TOC can be 2-3x

slower than the fastest method on operations A ·v and v ·A.
However, as we will show shortly in § 5.3, it has negligible

effect in the context of overall ML training time.

5.3 End-to-End MGD Runtimes
In this subsection, we discuss the end-to-end MGD runtime

performance with different compression schemes.

Compared Methods. We compare TOC with DEN, CSR,

CVI, DVI, Snappy, and Gzip in C++ implementation. We also

integrate TOC into Bismarck and compare it with DEN and

CSR implemented in Bismarck, ScikitLearn, and TensorFlow.

They are denoted as ML system name plus data format, e.g.,

0 2000
A * c [us]

DEN
CSR
CVI
DVI

Snappy
Gzip

TOC (ours)

17±2
7±0.4
0.1±0.0
0.1±0.0

146±2
980±2

0.1±0.0
Census

0 20000
A * c [us]

220±15
66±0.0
0.1±0.0
0.1±0.0

2.1K±15
11.2K±15

0.1±0.0
Imagenet

0 10000
A * c [us]

186±4
37±2
0.3±0.0
0.3±0.0

1.4K±4
7.3K±4

0.3±0.0
Mnist

0 2000
A * c [us]

33±0.0
3±0.0
0.2±0.0
0.2±0.0

333±0.0
1.4K±0.0

0.2±0.0
Kdd99

0 500000
A * c [us]

18.0K±389
18±0.0
14±0.3
14±0.0

0.1M±389
0.4M±389

14±0.4
Rcv1

0 5000
A * c [us]

22±0.0
22±0.0
20±0.3
28±14
49±0.0

2.5K±0.0
23±5
Deep1Billion

0 2000
A * v [us]

CLA
DEN
CSR
CVI
DVI

Snappy
Gzip

TOC (ours)

210±20
31±0.0
13±0.0
17±0.0
32±1

163±0.0
987±0.0

18±0.1
Census

0 20000
A * v [us]

1.0K±238
437±16
139±10
131±0.5
440±13

2.4K±16
11.2K±16

333±28
Imagenet

0 10000
A * v [us]

1.0K±7
372±5
69±0.1
70±0.1
373±4

1.5K±5
7.0K±5

177±5
Mnist

0 2000
A * v [us]

165±5
68±0.0
6±0.0
6±0.0
71±4

391±0.0
1.4K±0.0

4±0.0
Kdd99

0 500000
A * v [us]

11.8K±118
26.9K±150
34±0.0
36±1
22.8K±27

0.1M±150
0.5M±151

98±2
Rcv1

0 5000
A * v [us]

127±4
45±0.1
45±1
48±3
45±1
74±0.1

2.5K±0.1
127±0.9
Deep1Billion

0 2000
A * M [us]

DEN
CSR
CVI
DVI

Snappy
Gzip

TOC (ours)

660±5
309±8
371±3

631±20
789±5

1.6K±5
124±3

Census

0 25000
A * M [us]

9.0K±30
2.9K±12
3.6K±23

8.1K±35
10.9K±30

20.0K±30
1.7K±92

Imagenet

0 20000
A * M [us]

7.5K±6
1.5K±7
1.8K±10

6.9K±148
8.7K±6

14.1K±6
1.3K±8

Mnist

0 5000
A * M [us]

1.4K±5
146±5
176±2

1.3K±14
1.7K±5

2.7K±5
53±2

Kdd99

0 2500000
A * M [us]

1.4M±98.7K
1.4K±16
1.5K±21

0.5M±4.2K
1.5M±98.7K

1.8M±98.7K
1.5K±73

Rcv1

0 5000
A * M [us]

932±3
940±3
946±3
867±17
963±3

3.4K±3
994±112

Deep1Billion

0 2000
v * A [us]

CLA
DEN
CSR
CVI
DVI

Snappy
Gzip

TOC (ours)

157±11
30±2
24±0.0
24±0.0
57±0.3
162±2

966±2
17±0.1

Census

0 20000
v * A [us]

1.3K±309
393±15
247±16
247±10
779±5

2.4K±15
11.2K±15

405±19
Imagenet

0 10000
v * A [us]

1.4K±1.2K
337±5
136±22
126±2
667±2

1.7K±5
6.8K±5

259±8
Mnist

0 2000
v * A [us]

144±5
64±3
11±0.0
11±0.0
121±0.2

379±3
1.3K±3

6±0.1
Kdd99

0 500000
v * A [us]

8.2K±137
24.5K±242
77±5
76±1
40.4K±42

0.1M±242
0.4M±242

172±6
Rcv1

0 5000
v * A [us]

102±4
41±2
82±3
82±2
81±1
71±2

3.0K±2
190±4
Deep1Billion

0 2000
M * A [us]

DEN
CSR
CVI
DVI

Snappy
Gzip

TOC (ours)

712±19
512±13
506±6
619±47

842±19
1.6K±19

130±14
Census

0 25000
M * A [us]

10.3K±44
5.2K±123
5.0K±33

7.9K±19
12.4K±44

21.2K±44
2.4K±121

Imagenet

0 20000
M * A [us]

8.9K±19
2.6K±17
2.6K±30

6.9K±54
10.1K±19

15.5K±19
1.5K±17

Mnist

0 5000
M * A [us]

1.5K±9
255±6
241±5

1.3K±26
1.8K±9

2.8K±9
46±2

Kdd99

0 1500000
M * A [us]

0.5M±3.3K
8.2K±302
9.0K±209

0.4M±2.8K
0.6M±3.3K

0.9M±3.3K
9.1K±182

Rcv1

0 5000
M * A [us]

952±6
1.6K±4
1.6K±7

839±10
982±6

3.4K±6
1.1K±79

Deep1Billion

Figure 6: Average runtimes (5 runs) and 95% confidence intervals to execute different matrix operations on com-
pressedmini-batches. From top to bottomare differentmatrix operations, where c is a scalar,v is an uncompressed
vector,M is an uncompressed matrix, and A is the compressed matrix. From left to right are different datasets.

BismarckTOC, ScikitLearnDEN, and TensorFlowCSR.

Machine Learning Models. We choose three ML models:

Logistic regression (LR), Support vector machine (SVM),

and Neural network (NN). LR/SVM/NN use the standard

logistic/hinge/cross-entropy loss respectively. For LR and

SVM, we use the standard one-versus-the-other technique to

do the multi-class classification. Our NN has a feed-forward

structure with two hidden layers of 200 and 50 neurons us-

ing the sigmoid activation function, and the output layer

activation function is sigmoid for binary output and softmax

for multi-class outputs. For Mnist, the output has 10 classes,

while all the other datasets have binary outputs.

Table 5: End-to-end MGD runtimes (in minutes) for training machine learning models: Neural network (NN),
Logistic regression (LR), and Support vector machine (SVM) on datasets Imagenet and Mnist.

Methods Imagenet1m (7GB) Imagenet25m (170GB) Mnist1m (6GB) Mnist25m (150GB)
NN LR SVM NN LR SVM NN LR SVM NN LR SVM

TOC (ours) 12.3 0.7 0.7 249 13 13 9.0 2.1 2.1 182 52 54
DEN 14.6 3.9 3.8 666 374 360 15.8 7.9 7.8 708 526 545

CSR 12.7 2.1 2.1 428 199 187 10.8 1.6 1.6 346 156 155

CVI 12.5 1.0 1.1 323 98 83 9.6 1.4 1.4 250 92 91.6

DVI 13.0 1.2 1.2 311 73.1 63 14.5 6.2 6.4 385 224 226

Snappy 14.8 3.9 4.0 348 126 127 15.8 8.5 8.4 363 210 213

Gzip 20.8 11.7 12.5 463 247 255 20.5 12.6 12.9 393 238 243

BismarckTOC 12.6 0.76 0.77 264 13.8 13.7 10.3 2.2 2.2 198 54 57

BismarckDEN N/A 3.5 3.2 N/A 309 310 N/A 7.2 7.1 N/A 428 421

BismarckCSR N/A 2.4 2.2 N/A 141 134 N/A 1.8 1.7 N/A 114 110

ScikitLearnDEN 14.7 4 3.6 633 454 456 14.8 8.1 7.2 638 536 488

ScikitLearnCSR 42.7 2.4 2.2 1003 332 334 32.9 4.4 3.3 865 303 284

TensorFlowDEN 11.2 3.6 3.4 550 426 439 10.9 4.4 4.2 537 439 427

TensorFlowCSR 18.4 4.4 4.3 601 373 359 14.8 6.7 6.5 512 372 341

0 20 40
Time [min]

1.5

2.0

2.5

3.0

3.5

4.0

Te
st

 E
rr

or
 R

at
e(

%
)

NN Mnist1m
 (15GB RAM)

0 5 10 15 20
Time [min]

10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0

LR Mnist1m
 (15GB RAM)

0 200 400 600
Time [min]

1.5

2.0

2.5

3.0

3.5

4.0

NN Mnist25m
 (15GB RAM)

0 100 200 300 400
Time [min]

10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0

LR Mnist25m
 (15GB RAM)

ScikitLearnDEN ScikitLearnCSR TensorFlowDEN TensorFlowCSR BismarckTOC (ours)

0 100 200 300 400
Time [min]

1.5

2.0

2.5

3.0

3.5

4.0

NN Mnist25m
 (180GB RAM)

0 50 100 150
Time [min]

10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0

LR Mnist25m
 (180GB RAM)

Figure 7: Test error rate on Mnist dataset as a function of time on different systems.

MGD Training.We use MGD to train the ML models. Each

dataset is divided into mini-batches with 250 rows encoded

with different methods. For the sake of simplicity, we run

MGD for fixed 10 epochs. The results of more sophisticated

termination conditions are similar. In each epoch, we visit

all the mini-batches and update ML models using each mini-

batch. For SVM/LR, we train sequentially. For NN, we use

the classical way [13] to train the network parallelly. The

end-to-end MGD runtimes include all the epochs of train-

ing time but do NOT include the compression time because

in practice it is a one-time cost and is typically amortized

among different ML models.

Dataset Generation. We use the same technique reported

in [14] to generate scaled real datasets, e.g., Imagenet1m (1

million rows) and Mnist25m (25 million rows).

Summary of Results. Table 5 presents the overall results
on datasets Imagenet and Mnist. Due to the space limit, we

put the results on the remaining datasets to Appendix D.4.

On Imagenet1m andMnist1m,mini-batches encoded using

all the methods fit into memory. In this case, CVI and TOC

are the fastest methods. General compression schemes like

Snappy and Gzip are much slower due to their significant

decompression overheads. It is interesting to see that TOC

is even faster than CVI for LR and SVM on ImageNet1m

despite the fact that matrix operations of TOC are slower on

ImageNet1m and all the data fit into memory. The reason

is that TOC reduces the initial IO time because of its better

compression ratio. For example, TOC uses 10 seconds to

read the data while CVI takes 36 seconds to read the data on

ImageNet1m. On Mnist1m, CVI is faster than TOC for LR

and SVM because we need to train ten LR/SVM models and

there are more matrix operations involved.

On Imagenet25m and Mnist25m, only mini-batches en-

coded using Snappy, Gzip, and TOC fit into memory. In this

case, TOC is up to 1.4x/5.6x/4.8x faster than the state-of-the-

art methods for NN/LR/SVM respectively. The speed-up of

TOC for LR/SVM is larger on Imagenet25m than Mnist25m,

as Mnist25m has ten output classes and we train ten models

so there are more matrix operations involved.

ComparisonswithPopularMachine Learning Systems.
Table 5 also includes the MGD runtimes of DEN and CSR in

Bismarck, ScikitLearn, and TensorFlow. We change the code

of using TensorFlow and ScikitLearn a bit so that they can do

disk-based learning when the dataset does not fit into mem-

ory. The table also includes BismarckTOC, which typically

has less than 10 percent overhead compared with running

TOC in our c++ program. This overhead is caused by the

fudge factor of the database storage thus a bit larger disk IO

time. On Imagenet1m and Mnist1m, BismarckTOC is compa-

rable with the best methods in these systems (TensorFlow-

DEN) for NN but up to 3.2x/2.9x faster than the best methods

in these systems for LR/SVM respectively. On Imagenet25m

and Mnist25m, BismarckTOC is up to 2.6x/10.2x/9.8x faster

than the best methods in other systems for NN/LR/SVM re-

spectively because only the TOC data fit into memory. Thus,

integrating TOC into these ML systems can greatly benefit

their MGD performance.

Accuracy Study.We also plot the error rate of neural net-

work and logistic regression as a function of time on Mnist.

The goal is to compare the convergence rate of Bismarck-

TOC with other standard tools like ScikitLearn and Tensor-

Flow. For Mnist1m (7GB) and Mnist25m (170GB), we train

30 epochs and 10 epochs, respectively. Figure 7 presents the

results. On Mnist1m and a 15GB RAM machine, Bismarck-

TOC and TensorFlowDEN finished the training roughly at

the same time, this verified our claim that BismarckTOC

has comparable performance with the state-of-the-art ML

system if the data fit into memory. On Mnist25m and a 15GB

RAM machine, BismarckTOC finished the training much

faster than other ML systems because only TOC data fit

into memory. We also used a machine with 180GB RAM

on Mnist25m which did not change BismarckTOC’s perfor-

mance but boosted the performance of TensorFlow and Scik-

itLearn to be comparable with BismarckTOC as all the data

fit into memory. However, renting a 180GB RAM machine is

more expensive than renting a 15GB RAMmachine. Thus, we

believe BismarckTOC can significantly reduce users’ cost.

6 DISCUSSION
Advanced Neural Network. It is possible to apply TOC to

more advanced neural networks such as convolutional neu-

ral networks on images. One just need to apply the common

image-to-column [25] operation, which replicates the pixels

of each sliding window as a matrix column. This way, the

convolution operation can be expressed as the matrix multi-

plication operation over the replicated matrix. The replicated

matrix can be compressed by TOC andwe expect higher com-

pression ratios due to the data replication.

7 RELATEDWORK
Data Compression for Analytics. There is a long line of
research [1, 14, 27, 34, 41, 43] of integrating data compression

into databases and relational query processing workloads on

the compressed data. TOC is orthogonal to these works since

TOC focuses on a different workload—mini-batch stochastic

gradient descent of machine learning training.

Machine Learning Analytics Systems. There are a num-

ber of systems (e.g., MLib [29], MadLib [18], Systemml [8, 14],

Bismarck [15], SimSQL [9], ScikitLearn [32], MLBase [22],

and TensorFlow [2]) for machine learning workloads. Our

work focuses on the algorithm perspective and is comple-

mentary to these systems, i.e., integrating TOC into these

systems can greatly benefit their ML training performance.

Compressed LinearAlgebra (CLA). CLA [14] compresses

the whole dataset and applies batch gradient descent related

operations such as vanilla BGD, L-BFGS, and conjugate gradi-

ent methods, while TOC focuses on MGD. Furthermore, CLA

needs to store an explicit dictionary. When applying CLA to

BGD, there are many references to dictionary entries so the

dictionary cost is amortized. On a small mini-batch, there

are not that many references to the dictionary entries so the

explicit dictionary cost makes the CLA compression ratio

less desirable. On the contrary, TOC is adapted from LZW

and it does not store an explicit dictionary, so TOC achieves

good compression ratios even on small mini-batches.

Factorized Learning. Factorized machine learning tech-

niques [11, 23, 24, 38] push machine learning computations

through joins and avoid the schema-based redundancy on

denormalized datasets. These techniques need a schema to

define the static redundancies in the denormalized datasets,

while TOC can find the redundancies in the datasets automat-

ically without a schema. Furthermore, factorized learning

techniques work for BGD while TOC focuses on MGD.

8 CONCLUSION AND FUTUREWORK
Mini-batch stochastic gradient descent (MGD) is a workhorse

algorithm of modern ML. In this paper, we propose a lossless

data compression scheme called tuple-oriented compression

(TOC) to reduce memory/storage footprints and runtimes

for MGD. TOC follows a design principle that tailors the

compression scheme to the data access pattern of MGD in a

way that preserves row/column boundaries in mini-batches

and adapts matrix operation executions to the compression

scheme as much as possible. This enables TOC to attain both

good compression ratios and decompression-free executions

for matrix operations used by MGD. There are a number

of interesting directions for future work, including deter-

mining more workloads that can execute directly on TOC

outputs and investigating the common structures between

the adaptable workloads and compression schemes.

ACKNOWLEDGMENTS
We thank all the anonymous reviewers. This work was par-

tially supported by a gift from Google.

REFERENCES
[1] D. Abadi, S. Madden, and M. Ferreira. Integrating compression and

execution in column-oriented database systems. In Proceedings of the
2006 ACM SIGMOD international conference on Management of data,
pages 671–682. ACM, 2006.

[2] M. Abadi et al. Tensorflow: A system for large-scale machine learning.

In OSDI, volume 16, pages 265–283, 2016.

[3] M. Amini, N. Usunier, and C. Goutte. Learning from multiple partially

observed views-an application to multilingual text categorization. In

Advances in neural information processing systems, pages 28–36, 2009.
[4] A. Ashari et al. On optimizing machine learning workloads via kernel

fusion. In ACM SIGPLAN Notices, volume 50, pages 173–182. ACM,

2015.

[5] A. Babenko and V. Lempitsky. Efficient indexing of billion-scale

datasets of deep descriptors. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2055–2063, 2016.

[6] Y. Bengio. Practical recommendations for gradient-based training

of deep architectures. In Neural networks: Tricks of the trade, pages
437–478. Springer, 2012.

[7] G. E. Blelloch. Introduction to data compression. Computer Science
Department, Carnegie Mellon University, 2001.

[8] M. Boehm et al. Hybrid parallelization strategies for large-scale ma-

chine learning in systemml. Proceedings of the VLDB Endowment,
7(7):553–564, 2014.

[9] Z. Cai et al. Simulation of database-valued markov chains using simsql.

In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, pages 637–648. ACM, 2013.

[10] C. Chelba et al. One billion word benchmark for measuring progress

in statistical language modeling. arXiv preprint arXiv:1312.3005, 2013.
[11] L. Chen et al. Towards linear algebra over normalized data. Proceedings

of the VLDB Endowment, 10(11):1214–1225, 2017.
[12] J. Dean. Challenges in building large-scale information retrieval sys-

tems: invited talk. In Proceedings of the Second ACM International
Conference on Web Search and Data Mining, pages 1–1. ACM, 2009.

[13] J. Dean et al. Large scale distributed deep networks. In Advances in
neural information processing systems, pages 1223–1231, 2012.

[14] A. Elgohary et al. Compressed linear algebra for large-scale machine

learning. Proceedings of the VLDB Endowment, 9(12):960–971, 2016.
[15] X. Feng et al. Towards a Unified Architecture for in-RDBMS Analytics.

In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, pages 325–336. ACM, 2012.

[16] S. Garavaglia and A. Sharma. A smart guide to dummy variables: Four

applications and a macro. In Proceedings of the Northeast SAS Users
Group Conference, page 43, 1998.

[17] D. Harnik et al. Estimation of deduplication ratios in large data sets.

In Mass Storage Systems and Technologies (MSST), 2012 IEEE 28th Sym-
posium on, pages 1–11. IEEE, 2012.

[18] J. M. Hellerstein et al. The madlib analytics library: or mad skills, the

sql. Proceedings of the VLDB Endowment, 5(12):1700–1711, 2012.
[19] G. Hinton, N. Srivastava, and K. Swersky. Neural networks for machine

learning lecture 6a overview of mini-batch gradient descent. Cited on,
page 14, 2012.

[20] Z. Kaoudi et al. A cost-based optimizer for gradient descent opti-

mization. In Proceedings of the 2017 ACM International Conference on
Management of Data, pages 977–992. ACM, 2017.

[21] K. Kourtis, G. Goumas, and N. Koziris. Optimizing sparse matrix-vector

multiplication using index and value compression. In Proceedings of
the 5th conference on Computing frontiers, pages 87–96. ACM, 2008.

[22] T. Kraska et al. Mlbase: A distributed machine-learning system. In

Cidr, volume 1, pages 2–1, 2013.

[23] A. Kumar et al. To join or not to join? thinking twice about joins before

feature selection. In Proceedings of the 2016 International Conference
on Management of Data, pages 19–34. ACM, 2016.

[24] A. Kumar, J. Naughton, and J. M. Patel. Learning generalized linear

models over normalized data. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pages 1969–1984.
ACM, 2015.

[25] L. Lai, N. Suda, and V. Chandra. Cmsis-nn: Efficient neural network

kernels for arm cortex-m cpus. arXiv preprint arXiv:1801.06601, 2018.
[26] D. Lemire and L. Boytsov. Decoding billions of integers per second

through vectorization. Software: Practice and Experience, 45(1):1–29,
2015.

[27] Y. Li and J. M. Patel. Bitweaving: fast scans for main memory data

processing. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pages 289–300. ACM, 2013.

[28] M. Lichman. UCI machine learning repository, 2013.

[29] X. Meng et al. Mllib: Machine learning in apache spark. The Journal
of Machine Learning Research, 17(1):1235–1241, 2016.

[30] D. Mishkin, N. Sergievskiy, and J. Matas. Systematic evaluation of cnn

advances on the imagenet. arXiv preprint arXiv:1606.02228, 2016.
[31] F. Niu et al. Hogwild: A lock-free approach to parallelizing stochastic

gradient descent. In NIPS, 2011.
[32] F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal

of Machine Learning Research, 12:2825–2830, 2011.
[33] C. Qin, M. Torres, and F. Rusu. Scalable asynchronous gradient de-

scent optimization for out-of-core models. Proceedings of the VLDB
Endowment, 10(10):986–997, 2017.

[34] V. Raman et al. Db2 with blu acceleration: So much more than just a

column store. Proceedings of the VLDB Endowment, 6(11):1080–1091,
2013.

[35] S. Ruder. An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747, 2016.
[36] O. Russakovsky et al. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 115(3):211–252, 2015.
[37] Y. Saad. Iterative methods for sparse linear systems, volume 82. siam,

2003.

[38] M. Schleich, D. Olteanu, and R. Ciucanu. Learning linear regression

models over factorized joins. In Proceedings of the 2016 International
Conference on Management of Data, pages 3–18. ACM, 2016.

[39] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014.

[40] S. Shalev-Shwartz et al. Learnability, stability and uniform conver-

gence. The Journal of Machine Learning Research, 11:2635–2670, 2010.
[41] J. Wang et al. An experimental study of bitmap compression vs. in-

verted list compression. In Proceedings of the 2017 ACM International
Conference on Management of Data, pages 993–1008. ACM, 2017.

[42] T. A. Welch. A technique for high-performance data compression.

Computer, 6(17):8–19, 1984.
[43] R. M. G. Wesley and P. Terlecki. Leveraging compression in the tableau

data engine. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 563–573. ACM, 2014.

[44] R. H. Wiggins et al. Image file formats: Past, present, and future 1.

Radiographics, 21(3):789–798, 2001.
[45] X. Wu et al. Bolt-on differential privacy for scalable stochastic gradient

descent-based analytics. In Proceedings of the 2017 ACM International
Conference on Management of Data, pages 1307–1322. ACM, 2017.

[46] H.-F. Yu et al. Large linear classification when data cannot fit in

memory. ACM Transactions on Knowledge Discovery from Data (TKDD),
5(4):23, 2012.

[47] J. Ziv and A. Lempel. A universal algorithm for sequential data com-

pression. IEEE Transactions on information theory, 23(3):337–343, 1977.
[48] J. Ziv and A. Lempel. Compression of individual sequences via variable-

rate coding. IEEE transactions on Information Theory, 24(5):530–536,
1978.

A PROOF OF THEOREMS

A.1 Theorem 1
Proof. Without loss of generality, we use a specific row

A[i, :] in the proof. First, we substitute A[i, :] with sequences

stored in the prefix tree C′, then

A[i, :] · v =

len(D[i ,:])−1∑
j=0

C′[D[i, j]].seq · v (9)

Plug Equation 4 into Equation 9, we get Equation 5. Fol-

lowing the definition of the sequence of the tree node, we

immediately get Equation 6. □

A.2 Theorem 2
Proof. We substitute A with sequences stored in C′

v · A =
n−1∑
i=0

v[i] · A[i, :]

=

n−1∑
i=0

len(D[i ,:])−1∑
j=0

v[i] · C′[D[i][j]].seq. (10)

Merge terms in Equation 10 with same sequences

v · A =

len(C′)−1∑
i=1

C′[i].seq · (
∑

D[ik , jk]=i ,∀ik ∈ℵ,∀jk ∈ℵ

v[ik]) (11)

Plug Equation 7 into Equation 11, we get Equation 8. □

B MORE TIME COMPLEXITY ANALYSIS
ExecutingM ·A andA ·M needs to build C′, scan C′, and scan
D. As shown in Algorithm 2, buildingC′ has complexity O(|I|
+ |D|) and |C′ | = |I| + |D|. When scanning C′ and D, each
element needs to do row_size(M)/col_size(M) operations for

M ·A/A ·M respectively. Thus, the time complexity forM ·A
and A ·M is O(row_size(M) * (|I| + |D|)) and O(col_size(M) *

(|I| + |D|)) respectively.

C MORE ALGORITHMS
Algorithm 6 presents the detailed steps for matrix plus scalar

operation (i.e.,A.+c). Algorithm 7 and Algorithm 8 presents

how to directly execute A · M and M · A on TOC outputs

respectively.

Algorithm 6 Execute matrix plus scalar element-wise oper-

ation (i.e., A. + c) on the TOC output.

1: functionMatrixPlusScalar(D, I, c)
2: inputs: column_index:value pairs in the first layer

of the prefix tree I, encoded table D, and scalar c
3: outputs: the result of A. + c in R
4: C′← BuildPrefixTree(I, D)
5: for i = 0 to len(D)-1 do
6: B[i]← [] ▷ initialize B[i] as an empty vector

7: for j = 0 to len(D[i ,:])-1 do
8: reverse_seq← []

9: tree_index← D[i][j]
10: while tree_index , 0 do ▷ backtrack C′ to

get the reversed sequence of the tree node D[i][j]
11: reverse_seq.Append(C′[tree_index].key)
12: tree_index← C′[tree_index].parent
13: for k = len(reverse_seq)-1 to 0 do
14: B[i].Append(reverse_seq[k])
15: A← TransformToDense(B)
16: R← A. + c
17: return(R)

Algorithm 7 Execute A ·M on the TOC output.

1: functionMatrixTimesUncompressedMatrix(D, I,M)

2: inputs: column_index:value pairs in the first layer

of I, encoded table D, and uncompressed matrixM
3: outputs: the result of A ·M in R
4: C′← BuildPrefixTree(I, D)
5: H← [0] ▷ initialize as a zero matrix

6: for i = 1 to len(C′)-1 do ▷ scan C′ to compute H
7: for j = 0 to num_of_columns(M)-1 do
8: H[i][j] ← C′[i].key · M[:, j] +

H[C′[i].parent][j]
9: R← [0] ▷ initialize as a zero matrix

10: for i = 0 to len(D)-1 do ▷ scan D to compute R
11: for j = 0 to len(D[i ,:])-1 do
12: for k = 0 to num_of_columns(M)-1 do
13: R[i][k] ← R[i][k] +H[D[i][j]][k]
14: return(R)

D MORE EXPERIMENTS

D.1 Integration TOC into Bismarck
We integrated TOC into Bismarck and replaced its existing

matrix kernels. There are three key parts of the integration.

First, we allocate an arena space in Bismarck shared memory

for storing the ML models. Second, we replace the existing

Bismarck matrix kernel with the TOC matrix kernel for up-

dating the ML models. Third, a database table is used to store

Algorithm 8 ExecuteM · A on the TOC output.

1: function UncompressedMatrixTimesMatrix(D, I,M)

2: inputs: column_index:value pairs in the first layer

of I, encoded table D, and uncompressed matrixM
3: outputs: the result ofM · A in R
4: C′← BuildPrefixTree(I, D)
5: H← [0] ▷ initialize as a zero matrix

6: for i = 0 to len(D)-1 do ▷ scan D to compute H
7: for j = 0 to len(D[i ,:]) -1 do
8: for k = 0 to num_of_rows(M) -1 do
9: H[D[i][j]][k] ← M[k][i] +H[D[i][j]][k]
10: R← [0] ▷ initialize as a zero matrix

11: for i = len(C′) -1 to 1 do ▷ scan C′ to compute R
12: for j = 0 to num_of_rows(M) -1 do
13: R[j, :] ← R[j, :] + C′[i].key * H[i][j]
14: Add H[i][j] to H[C′[i].parent][j]
15: return(R)

the TOC compressed mini-batches and the serialized bytes of

each TOC compressed mini-batch are stored as a bytes field

of variable length in the row. After all these, we modified

the UDF of ML training to read the compressed mini-batch

from the table and use the replaced matrix kernel to update

the ML model in the arena.

C I M K R D

100

101

102

C
om

p.
 t

im
e

[m
s]

C I M K R D

100

101

102

D
ec

om
p.

 t
im

e
[m

s] Snappy
Gzip
TOC

Figure 8: Compression and decompression time of
Snappy, Gzip, and TOC on amini-batch with 250 rows.
C, I,M,K, R, andD stands forCensus, ImageNet,Mnist,
Kdd99, Rcv1, and Deep1Billion respectively.

0 5 10 15 20 25 30
Imagenet # of rows [millions]

0

200

400

600

800

M
G

D
 r

un
ti

m
es

 [
m

in
]

Neural Network

0 5 10 15 20 25 30
Imagenet # of rows [millions]

0
25
50
75

100
125

Logistic Regression

DEN
CSR

CVI
DVI

Snappy
Gzip

TOC (ours)

Figure 9: End-to-end MGD runtimes of ML training.

0 5 10 15 20 25 30
Imagenet # of rows [millions]

0

200

400

600

800

M
G

D
 r

un
ti

m
es

 [
m

in
]

Neural Network

0 5 10 15 20 25 30
Imagenet # of rows [millions]

0
50

100
150
200

Logistic Regression

DEN
TOC_SPARSE

TOC_SPARSE_AND_LOGICAL
TOC_FULL

Figure 10: Ablation study of TOC for MGD runtimes.

D.2 Comp./Decomp. Runtimes
Figure 8 presents compression/decompression time of Snappy,

Gzip, and TOC on a 250 row mini-batch. TOC is faster than

Gzip but slower than Snappy for compression. However,

TOC is faster than both Gzip and Snappy for decompression.

D.3 Compression Ratios
Ablation Study. We conduct an ablation study to show

the effectiveness of different components (e.g., sparse en-

coding, logical encoding, and physical encoding) in TOC.

Figure 11 shows the results. TOC_SPARSE_AND_LOGICAL

compresses better than TOC_SPARSE. TOC_FULL with all

the encoding techniques compresses the best. This shows

the effectiveness of all our encoding components.

Large Mini-batches. We compare different compression

methods on large mini-batches. Figure 12 shows the results.

As the mini-batch size grows, TOC becomes more competi-

tive. When the percent of rows of the whole dataset in the

mini-batch is 1.0, this is essentially batch gradient descent

(BGD) and TOC has the best compression ratio in this case.

This shows the potential of applying TOC to BGD related

workloads.

D.4 End-to-End MGD Runtimes
MGD runtimes on Census and Kdd99 are reported in Table 6.

Overall, the results are similar to those presented in § 5.3. On

small datasets like Census15m and Kdd7m, TOC has compa-

rable performance with other methods. On large datasets like

Census290m and Kdd200m, TOC is up to 1.8x/17.8x/18.3x

faster than the state-of-the-art compression schemes for

NN/LR/SVM respectively. We leave the results of datasets

Rcv1 and Deep1Billion because of their extreme sparsity/-

density such that we do not expect better performance from

TOC.

More Dataset Sizes. We also study the MGD runtime over

more different dataset sizes. Figure 9 presents the results.

In general, TOC remains the fastest method among all the

settings we have tested. When the dataset is small, CSR, CVI,

and DVI have comparable performance to TOC because all

the data fit into memory. When the dataset is large, TOC

is faster than other methods because only TOC, Gzip, and

100 200
of rows

0

5

10

15

C
om

pr
es

si
on

 r
at

io
s Census

100 200
of rows

0

5

10

15 Imagenet

100 200
of rows

0.0
2.5
5.0
7.5

10.0

Mnist

100 200
of rows

0

20

40

60
Kdd99

TOC_SPARSE TOC_SPARSE_AND_LOGICAL TOC_FULL

100 200
of rows

0

100

200

300

400
Rcv1

100 200
of rows

0.0

0.2

0.4

0.6
Deep1Billion

Figure 11: Compression ratios of TOC variants on varying size mini-batches. TOC_SPARSE uses sparse encoding.
TOC_SPARSE_AND_LOGICAL uses sparse and logical encoding. TOC_FULL uses all the encoding techniques.

0.0 0.5 1.0
percent of rows

0

20

40

C
om

pr
es

si
on

 r
at

io
s Census

0.0 0.5 1.0
percent of rows

0
5

10
15
20

Imagenet

0.0 0.5 1.0
percent of rows

0

10

20

Mnist

0.0 0.5 1.0
percent of rows

0

50

100

150

200
Kdd99

CSR CVI DVI Snappy Gzip TOC (ours) CLA

Figure 12: Compression ratios of different methods on large mini-batches. The x-axis is the percent of rows of the
whole dataset in the mini-batch.

Table 6: End-to-end MGD runtimes (in minutes) for training machine learning models: Neural network(NN), Lo-
gistic regression (LR), and Support vector machine (SVM) on datasets Census and Kdd99.

Methods Census15m (7GB) Census290m (140GB) Kdd7m (7GB) Kdd200m (200GB)
NN LR SVM NN LR SVM NN LR SVM NN LR SVM

TOC (ours) 35 0.8 0.7 702 16 14 16.1 0.2 0.2 323 6.1 5.9
DEN 39 4.0 4.0 1108 253 251 29 4.6 4.4 1003 608 615

CSR 38 1.8 1.8 942 161 167 19.2 0.4 0.4 438 56 53

CVI 37 1.1 1.0 844 80 67 18.5 0.3 0.3 422 31 30

DVI 38 1.2 1.1 800 46 43 28.4 1.2 1.1 611 71 71

Snappy 41 4.7 4.6 905 121 115 27.2 3.5 3.5 616 127 128

Gzip 46 11.1 11.1 965 244 241 33.5 7.5 7.5 683 235 235

BismarckTOC 38 0.87 0.88 742 17.4 14.8 16.8 0.3 0.31 329 6.4 6.3

BismarckDEN N/A 4.2 4.3 N/A 321 310 N/A 4.0 3.8 N/A 645 644

BismarckCSR N/A 3.2 3.2 N/A 222 234 N/A 0.9 0.9 N/A 114 115

ScikitLearnDEN 73.2 7.3 6.6 1715 604 580 42 5 4.6 1797 771 772

ScikitLearnCSR 105.1 5.7 5.1 2543 421 408.8 44 1.7 1.5 1476 166 160

TensorFlowDEN 38.1 9.4 10.5 1073 638 610 21.4 5.5 5.1 1199 781 779

TensorFlowCSR 54.7 15.1 14.0 1244 681 661 15.2 4.1 4.4 577 300 274

Snappy data fit into memory and TOC avoids the decompres-

sion. The speed-up of TOC is larger on Logistic regression

than on Neural network because there are more matrix op-

erations involved in training Neural network.

Ablation Study. We conduct an ablation study to verify

whether the components in Figure 3 actually matter for

TOC’s performance in reducing MGD runtimes. Specifically,

we compare three variants of TOC: TOC_SPARSE (sparse en-

coding), TOC_SPARSE_AND_LOGICAL (sparse and logical

encoding), and TOC_FULL (all the encoding techniques). Fig-

ure 10 presents the results. With more encoding techniques

used, TOC’s performance becomes better, which shows the

effectiveness of all our encoding components.

	Abstract
	1 Introduction
	2 Background
	2.1 Machine Learning Training
	2.2 Data Compression

	3 Tuple-oriented Compression
	3.1 Logical Encoding
	3.2 Physical Encoding

	4 Matrix Operation Execution
	4.1 Shared Operators
	4.2 Sparse-safe Element-wise Operations
	4.3 Right Multiplication Operations
	4.4 Left Multiplication Operations
	4.5 Sparse-unsafe Element-wise Operations
	4.6 Time Complexity Analysis

	5 Experiments
	5.1 Compression Ratios
	5.2 Matrix Operation Runtimes
	5.3 End-to-End MGD Runtimes

	6 Discussion
	7 Related Work
	8 Conclusion and Future Work
	References
	A Proof of Theorems
	A.1 Theorem 1
	A.2 Theorem 2

	B More Time Complexity Analysis
	C More Algorithms
	D More Experiments
	D.1 Integration TOC into Bismarck
	D.2 Comp./Decomp. Runtimes
	D.3 Compression Ratios
	D.4 End-to-End MGD Runtimes

