
Experimental Study of Directed
Feedback Vertex Set Problem

With Rudolf Fleischer and Liwei Yuan

Fudan University, Shanghai

Xi Wu

Algorithm Engineering for DFVS

Peter Sanders, Festschrift Mehlhorn 60th, 2009

Chen’s FPT
algorithm

Algorithm Engineering for DFVS

Peter Sanders, Festschrift Mehlhorn 60th, 2009

Chen’s FPT
algorithm

Algorithm Engineering for DFVS

Chen’s FPT
algorithm

Experimental
analysis

Peter Sanders, Festschrift Mehlhorn 60th, 2009

Chen’s FPT
algorithm

Algorithm Engineering for DFVS

Chen’s FPT
algorithm

Experimental
analysis

Peter Sanders, Festschrift Mehlhorn 60th, 2009

New data
reduction rules

Experimental
analysis

Chen’s FPT
algorithm

Chen’s FPT
algorithm

Algorithm Engineering for DFVS

Chen’s FPT
algorithm

Experimental
analysis

Peter Sanders, Festschrift Mehlhorn 60th, 2009

New data
reduction rules

Experimental
analysis

Chen’s FPT
algorithm

When helpful?
When not?

New data
reduction rules

Chen’s FPT
algorithm

Experimental
analysis

Chen’s FPT
algorithm

Algorithm Engineering for DFVS

Chen’s FPT
algorithm

Experimental
analysis

Peter Sanders, Festschrift Mehlhorn 60th, 2009

New data
reduction rules

Experimental
analysis

Chen’s FPT
algorithm

When helpful?
When not?

New data
reduction rules

Chen’s FPT
algorithm

Experimental
analysis

Implement
these rules

When helpful?
When not?

Experimental
analysis

New data
reduction rules

Chen’s FPT
algorithm

Algorithm Engineering for DFVS

Chen’s FPT
algorithm

Experimental
analysis

Peter Sanders, Festschrift Mehlhorn 60th, 2009

New data
reduction rules

Experimental
analysis

Chen’s FPT
algorithm

When helpful?
When not?

New data
reduction rules

Chen’s FPT
algorithm

Experimental
analysis

Implement
these rules

When helpful?
When not?

Experimental
analysis

New data
reduction rules

Quantify the
benefits

Implement
these rules

When helpful?
When not?

New data
reduction rules

Chen’s FPT
algorithm

Algorithm Engineering for DFVS

Chen’s FPT
algorithm

Experimental
analysis

Peter Sanders, Festschrift Mehlhorn 60th, 2009

New data
reduction rules

Experimental
analysis

Chen’s FPT
algorithm

When helpful?
When not?

New data
reduction rules

Chen’s FPT
algorithm

Experimental
analysis

Implement
these rules

When helpful?
When not?

Experimental
analysis

New data
reduction rules

Quantify the
benefits

Implement
these rules

When helpful?
When not?

New data
reduction rulesHeuristics

Implement
these rules

When helpful?
When not?

Quantify the
benefits

Chen’s FPT
algorithm

Algorithm Engineering for DFVS

Chen’s FPT
algorithm

Experimental
analysis

Peter Sanders, Festschrift Mehlhorn 60th, 2009

New data
reduction rules

Experimental
analysis

Chen’s FPT
algorithm

When helpful?
When not?

New data
reduction rules

Chen’s FPT
algorithm

Experimental
analysis

Implement
these rules

When helpful?
When not?

Experimental
analysis

New data
reduction rules

Quantify the
benefits

Implement
these rules

When helpful?
When not?

New data
reduction rulesHeuristics

Implement
these rules

When helpful?
When not?

Quantify the
benefits

Implement
heuristics

Heuristics

When helpful?
When not?

Quantify the
benefits

Chen’s FPT
algorithm

Algorithm Engineering for DFVS

Chen’s FPT
algorithm

Experimental
analysis

Peter Sanders, Festschrift Mehlhorn 60th, 2009

New data
reduction rules

Experimental
analysis

Chen’s FPT
algorithm

When helpful?
When not?

New data
reduction rules

Chen’s FPT
algorithm

Experimental
analysis

Implement
these rules

When helpful?
When not?

Experimental
analysis

New data
reduction rules

Quantify the
benefits

Implement
these rules

When helpful?
When not?

New data
reduction rulesHeuristics

Implement
these rules

When helpful?
When not?

Quantify the
benefits

Implement
heuristics

Heuristics

When helpful?
When not?

Quantify the
benefits

Deadlock
recovery

Implement
heuristics

Heuristics

When helpful?
When not?

Quantify the
benefits

Directed Feedback Vertex Set
(DFVS)

Find k vertices to destroy all cycles

1-FVS

Directed Feedback Vertex Set
(DFVS)

Find k vertices to destroy all cycles

1-FVS

What about this
one with k=8?

Directed Feedback Vertex Set
(DFVS)

Find k vertices to destroy all cycles

1-FVS

What about this
one with k=8?

Minimum DFVS
is NP-hard

DFVS vs. Undirected Feedback
Vertex Set (UFVS)

Both NP-hard, but UFVS is better
understood

DFVS UFVS

Approximation O(min{τ*logτ*loglogτ*, τ*logN
loglogN)-approximation
[Even ‘98] (τ* is the optimum
fractional solution)

2-approximation
[Bafna ‘1999]

FPT algorithm O(k! 4k nO(1))
[Chen STOC‘2008]

O(4k k n)
[Becker ‘2000]

Kernelization Polynomial kernel? Quadratic kernel
[Thomasse SODA‘2008]

Our Work
• Test engine: random graph generator

Controlling various parameters

• Experimental study of Chen’s FPT
algorithm for DFVS [Chen STOC‘2008]

With various parameters

• Data reductions and heuristics
Quantify the benefits

• Application: deadlock recovery
DFVS not more helpful than cycle detection

Random Graph Generator

• Goal: difficult, random graphs

• Parameters controlled:
n: Number of nodes
k: Size of the minimum FVS
edge density: ed = #edges/n

• A nontrivial task…

A Non-trivial Task
• Spanning tree

Wilson’s algorithm

• Connected DAG
Melancon’s algorithm

• Control
solution size, overlapping cycles, edge density …

Chen’s Algorithm

G

(k + 1)-subgraph

k-FVS

Iterative Compression

Chen’s Algorithm

G

(k + 1)-subgraph

k-FVS

x Iterative Compression

Chen’s Algorithm

G

(k + 2)-subgraph G’

(k+1) –FVS H x

Iterative Compression

Chen’s Algorithm

G

(k + 2)-subgraph G’

(k+1) –FVS H x

Compress into k-FVS

Iterative Compression

Chen’s Algorithm

G

(k + 2)-subgraph G’

(k+1) –FVS H x

|I| ≤ k

Iterative Compression

Chen’s Algorithm

G

(k + 2)-subgraph G’

(k+1) –FVS H x

|I| ≤ k

(G’-H) is acyclic

(H-I) is
acyclic

Iterative Compression

Chen’s Algorithm

G

(k + 2)-subgraph G’

(k+1) –FVS H x

|I| ≤ k

(G’-H) is acyclic

(H-I) is
acyclic

Iterative Compression

Chen’s Algorithm

G

(k + 2)-subgraph G’

(k+1) –FVS H x

|I| ≤ k

|U| ≤ k-|I|
(G’-H) is acyclic

(H-I) is
acyclic

Iterative Compression

Start Configuration of Chen’s
Algorithm

• Consider heuristic solution X:

– choose a k-subset Y of X
– start with S = (G – (X – Y))

If X is good, then better performance

Chen’s Original Algorithm

• Configuration
– n: from 40 to 200, step by 20
– k: in {2, 4, 6, 8}
– ed in {2.0, 3.0, 3.5, 4.0}

• Generate 10 graphs for (n, k, ed)
Record max, min and average

• Timeout: 3 hours
Count as 3 hours

Runtime Performance

Algorithm is slow, even with
small parameter k

Performance fluctuates
when n increases

Logarithmic runtime (ed=3.5) Runtime (ed=3.5)

Low Edge Density: High Runtime

Worst performance for n=40

Many Independent Cycles:
High Runtime

• An intuitive example: “Pyramid”

Many Independent Cycles:
High Runtime

• An intuitive example: “Pyramid”

Many Independent Cycles:
High Runtime

• An intuitive example: “Pyramid”

The optimum solution
for the first 3 layers

are the 2nd layer

Many Independent Cycles:
High Runtime

• An intuitive example: “Pyramid”

The optimum
solution for the

whole graph is the
1st and 3rd layers

Reduction Rules

• Reduction: in polynomial time
– reduce (G, k) to (G’, k’)
– (G, k) is a YES-instance iff (G’, k’) is a YES-

instance

• Kernelization
– |G’| is bounded by f(k)
– k’ ≤ k

Reduction Rules I (Chen)

• Trivial rules:

– Self-loops: add node to DFVS

– Parallel-edge: delete multiple edges

Reduction Rule II

• Dummy
– in-degree/out-degree = 0;

Other part
of the
graphu

delete u

Reduction Rules III

• Chain
– in-degree/out-degree = 1;

Other part
of the
graph

u

v

merge u and v

Reduction Rule IV

• Flower
– (k+1) vertex-independent cycles exactly

intersecting on u: add u to DFVS

u

Other part of the graph

k = 2
petal(u) = {x, y, z}

x y z

Reduction Rule V

• Shortcut
– petal(u) = {v}: bypass u

u

v

Reduction Rule V

• Shortcut
– petal(u) = {v}: bypass u

u

y

x z

w
y

x z

w

Remarks

• These rules do NOT give a kernelization

• We need rules when 2 ≤ |petal(u)| ≤ k

Non-Reducible Graphs

u

v

……
| petal(u) | = | petal(v) | = 2

u, v are useless

Non-Reducible Graphs

u

w

……
v

When can we safely reduce u, v, w?

Runtime with Reductions
(n small, k small)

No reductions With reductions

4X ~ 140X speedup

Reduced Size
(n large, k small)

Many flowers found !

90% nodes reduced

ed = 2.0 ed = 3.0

Preprocessing Time
(n large, k small)

Scales linearly with n and ed

ed = 2.0 ed = 3.0

Reduced Size
(n large, k large)

Now flower reduction does not work well

ed = 2.0 ed = 3.0

Which Rules are Powerful?

• n = 1000 and ed = 3.0

No flowers
found…

s

Start Heuristics

• Three heuristics:

– Big-Degree
pick biggest total degree vertices until acyclic

– Even’s Fractional Approximation
pick the most heavy weight set

– Even’s Full Approximation
pick the approximation solution

Evaluating Heuristics
No heuristic

Evaluating Heuristics
Fractional Approximation

40+s
20+s

No heuristic

Evaluating Heuristics
Fractional Approximation

40+s
20+s

Big Degree

10s 20+s

4x-50x speedup

Evaluating Heuristics
Fractional Approximation

40+s
20+s

Big Degree

10s 20+s

4x-50x speedup

Practical Scheme:
Preprocessing + Big-Degree + Chen’s
algorithm --> further 2-3x speedup

Practical Application:
Deadlock Recovery

t4

t1
L1

L4L3

L2 t2

t3

request
grant

own

Practical Application:
Deadlock Recovery

t4

t1
L1

L4L3

L2 t2

t3

request
grant

own
Deadlock

Practical Application:
Deadlock Recovery

t4

t1
L1

L4L3

L2 t2

t3

request
grant

own
Deadlock

Could DFVS help us for deadlock recovery?

Practical Application:
Deadlock Recovery

Could DFVS help us for deadlock recovery?

R1: one lock owned
by only one thread

R2: one thread can
wait on only one lock

Practical Application:
Deadlock Recovery

Could DFVS help us for deadlock recovery?

No overlapping cycles

Cycle detection is enough

R1: one lock owned
by only one thread

R2: one thread can
wait on only one lock

A Real System

• The Deadlock Immunity System

– OSDI ’08 (top system conference)
– Use cycle detection to enable deadlock

immunity
– 10% overhead on average

• instrumentations, framework overhead, etc.

Conclusion

• Quantitative analysis of Chen’s FPT
algorithm for DFVS

• New reduction rules
– With significant performance benefits
– Quantitative analysis

Open Problems

• Reduction rules when 2 ≤ |petal(u)| ≤ k ?
|petal(u)| ≥ (k+1), flower rule
|petal(u)| = 1, shortcut

• Kernelization for DFVS problem

• Better heuristics
Better approximation algorithm?

Thanks !

FPT search with different parameter
k

Backup Slides

Skew Separator

v1 v2 v3 vn…

G - F: Acyclic
u

Skew Separator

(F-F’) is acyclic.
Guess a toporder.

v1 v2 v3 vn…

G - F: Acyclic
u

Skew Separator

(F-F’) is acyclic.
Guess a toporder.

v1 v2 v3 vn…

G - F: Acyclic
u

Find (k-|F’|)
vertices to block
back edges go
from vi to vj (i>j)

Skew Separator

(F-F’) is acyclic.
Guess a toporder.

v1 v2 v3 vn…

G - F: Acyclic
u

Find (k-|F’|)
vertices to block
back edges go
from vi to vj (i>j)

Skew separator
problem. FPT

algorithm using
branching

Example of Applying Reductions

4

2

5

6

8

3

7

K = 2. FVS:

9

1

Example of Applying Reductions

4

2

5

6

8

3

7

K = 2. FVS:

9

Delete Parallel Edges

1

Example of Applying Reductions

4

2

5

6

8

3

7

K = 2. FVS:

9

Delete Parallel Edges

1

Example of Applying Reductions

4

2

5

6

8

3

7

K = 2. FVS:

9

Delete Parallel Edges

1

Example of Applying Reductions

4

2

5

6

8

3

7

K = 2. FVS:

9

Delete Parallel Edges

Delete Self Loops
1

Example of Applying Reductions

4

2

5

6

8

3

7

K = 2. FVS:

9

Delete Parallel Edges

Delete Self Loops
1

Example of Applying Reductions

4

2

5

6

8

3

7

K = 2. FVS:

9

Delete Parallel Edges

Delete Self Loops

Example of Applying Reductions

4

2

5

6

8

3

7

K = 2. FVS:

9

Delete Parallel Edges

Delete Self Loops

K = 1

Example of Applying Reductions

4

2

5

6

8

3

7

K = 2. FVS:

9

Delete Parallel Edges

Delete Self Loops

K = 1

1

Example of Applying Reductions

4

2

5

6

8

3

7

K = 2. FVS:

9

Delete Parallel Edges

Delete Self Loops

Delete Dummy

K = 1

1

Example of Applying Reductions

4

2

5

6

8

3

7

K = 2. FVS:

9

Delete Parallel Edges

Delete Self Loops

Delete Dummy

K = 1

1

Example of Applying Reductions

4

2

5

6

8

3

7

K = 2. FVS:

Delete Parallel Edges

Delete Self Loops

Delete Dummy

K = 1

1

Example of Applying Reductions

4

2

5

6

8

3

7

K = 2. FVS:

Delete Parallel Edges

Delete Self Loops

Delete Dummy

Find a Flower

K = 1

1

Example of Applying Reductions

4

2

5

6

8

3

7

K = 2. FVS:

Delete Parallel Edges

Delete Self Loops

Delete Dummy

Find a Flower

K = 1

1

Example of Applying Reductions

4

5

6

8

3

7

K = 2. FVS:

Delete Parallel Edges

Delete Self Loops

Delete Dummy

Find a Flower

K = 1

1

Example of Applying Reductions

4

5

6

8

3

7

K = 2. FVS:

Delete Parallel Edges

Delete Self Loops

Delete Dummy

Find a Flower

K = 1

1 2

Example of Applying Reductions

4

5

6

8

3

7

K = 2. FVS:

Delete Parallel Edges

Delete Self Loops

Delete Dummy

Find a Flower

K = 1

K = 0 and Acyclic

Done

1 2

Generation Strategy
• Generation strategy

– The edges of connected DAG are ¼ of the
total edge bound

– Each cycle has at most ¼ of nodes

– Generate cycles until reaching the edge bound

	Experimental Study of Directed Feedback Vertex Set Problem
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Directed Feedback Vertex Set�(DFVS)
	Directed Feedback Vertex Set�(DFVS)
	Directed Feedback Vertex Set�(DFVS)
	�DFVS vs. Undirected Feedback Vertex Set (UFVS)�
	Our Work
	Random Graph Generator
	A Non-trivial Task
	Chen’s Algorithm
	Chen’s Algorithm
	Chen’s Algorithm
	Chen’s Algorithm
	Chen’s Algorithm
	Chen’s Algorithm
	Chen’s Algorithm
	Chen’s Algorithm
	Start Configuration of Chen’s Algorithm
	Chen’s Original Algorithm
	Runtime Performance
	Low Edge Density: High Runtime
	Many Independent Cycles: �High Runtime
	Many Independent Cycles: �High Runtime
	Many Independent Cycles: �High Runtime
	Many Independent Cycles: �High Runtime
	Reduction Rules
	Reduction Rules I (Chen)
	Reduction Rule II
	Reduction Rules III
	Reduction Rule IV
	Reduction Rule V
	Reduction Rule V
	Remarks
	Non-Reducible Graphs
	Non-Reducible Graphs
	Runtime with Reductions�(n small, k small)
	Reduced Size �(n large, k small)
	Preprocessing Time �(n large, k small)
	Reduced Size �(n large, k large)
	Which Rules are Powerful?
	Start Heuristics
	Evaluating Heuristics
	Evaluating Heuristics
	Evaluating Heuristics
	Evaluating Heuristics
	Practical Application:�Deadlock Recovery
	Practical Application:�Deadlock Recovery
	Practical Application:�Deadlock Recovery
	Practical Application:�Deadlock Recovery
	Practical Application:�Deadlock Recovery
	A Real System
	Conclusion
	Open Problems
	Thanks !
	FPT search with different parameter k
	Backup Slides
	Skew Separator
	Skew Separator
	Skew Separator
	Skew Separator
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Generation Strategy

