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Directed Feedback Vertex Set
(DFVS)

Find k vertices to destroy all cycles

1-FVS

What about this 
one with k=8?

Minimum DFVS 
is NP-hard



DFVS vs. Undirected Feedback 
Vertex Set (UFVS)

Both NP-hard, but UFVS is better 
understood

DFVS UFVS

Approximation O(min{τ*logτ*loglogτ*, τ*logN
loglogN)-approximation
[Even ‘98] (τ* is the optimum 
fractional solution)

2-approximation
[Bafna ‘1999]

FPT algorithm O(k! 4k nO(1))
[Chen STOC‘2008]

O(4k k n)
[Becker ‘2000]

Kernelization Polynomial kernel? Quadratic kernel
[Thomasse SODA‘2008]



Our Work
• Test engine: random graph generator

Controlling various parameters

• Experimental study of Chen’s FPT  
algorithm for DFVS [Chen STOC‘2008]

With various parameters

• Data reductions and heuristics
Quantify the benefits

• Application: deadlock recovery
DFVS not more helpful than cycle detection



Random Graph Generator

• Goal: difficult, random graphs

• Parameters controlled:
n: Number of nodes
k: Size of the minimum FVS
edge density: ed = #edges/n

• A nontrivial task…



A Non-trivial Task
• Spanning tree

Wilson’s algorithm

• Connected DAG
Melancon’s algorithm

• Control 
solution size, overlapping cycles, edge density …
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Chen’s Algorithm

G

(k + 2)-subgraph  G’

(k+1) –FVS  H x

|I| ≤ k

|U| ≤ k-|I|
(G’-H) is acyclic

(H-I) is 
acyclic

Iterative Compression



Start Configuration of Chen’s 
Algorithm

• Consider heuristic solution X:

– choose a k-subset Y of X
– start with S = (G – (X – Y))

If X is good, then better performance



Chen’s Original Algorithm

• Configuration
– n: from 40 to 200, step by 20
– k: in {2, 4, 6, 8}
– ed in {2.0, 3.0, 3.5, 4.0}

• Generate 10 graphs for (n, k, ed)
Record max, min and average

• Timeout: 3 hours
Count as 3 hours



Runtime Performance

Algorithm is slow, even with 
small parameter k

Performance fluctuates 
when n increases

Logarithmic runtime (ed=3.5) Runtime (ed=3.5)



Low Edge Density: High Runtime 

Worst performance for n=40
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Many Independent Cycles: 
High Runtime

• An intuitive example: “Pyramid”

The optimum 
solution for the 

whole graph is the 
1st and 3rd layers



Reduction Rules

• Reduction: in polynomial time
– reduce (G, k) to (G’, k’)
– (G, k) is a YES-instance iff (G’, k’) is a YES-

instance

• Kernelization
– |G’| is bounded by f(k)
– k’ ≤ k



Reduction Rules I (Chen)

• Trivial rules:

– Self-loops: add node to DFVS

– Parallel-edge: delete multiple edges



Reduction Rule II

• Dummy
– in-degree/out-degree = 0;

Other part 
of the 
graphu

delete u



Reduction Rules III

• Chain
– in-degree/out-degree = 1;

Other part 
of the 
graph

u

v

merge u and v



Reduction Rule IV

• Flower
– (k+1) vertex-independent cycles exactly 

intersecting on u: add u to DFVS

u

Other part of the graph

k = 2
petal(u) = {x, y, z}

x y z



Reduction Rule V

• Shortcut
– petal(u) = {v}: bypass u

u

v



Reduction Rule V

• Shortcut
– petal(u) = {v}: bypass u

u

y

x z

w
y

x z

w



Remarks

• These rules do NOT give a kernelization

• We need rules when 2 ≤ |petal(u)| ≤ k



Non-Reducible Graphs

u

v

……
| petal(u) | = | petal(v) | = 2

u, v are useless



Non-Reducible Graphs

u

w

……
v

When can we safely reduce u, v, w?



Runtime with Reductions
(n small, k small)

No reductions With reductions

4X ~ 140X speedup



Reduced Size 
(n large, k small)

Many flowers found !

90% nodes reduced

ed = 2.0 ed = 3.0



Preprocessing Time 
(n large, k small)

Scales linearly with n and ed

ed = 2.0 ed = 3.0



Reduced Size 
(n large, k large)

Now flower reduction does not work well

ed = 2.0 ed = 3.0



Which Rules are Powerful?

• n = 1000 and ed = 3.0

No flowers 
found…

s



Start Heuristics

• Three heuristics:

– Big-Degree
pick biggest total degree vertices until acyclic

– Even’s Fractional Approximation
pick the most heavy weight set

– Even’s Full Approximation
pick the approximation solution



Evaluating Heuristics
No heuristic



Evaluating Heuristics
Fractional Approximation

40+s
20+s

No heuristic
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Evaluating Heuristics
Fractional Approximation

40+s
20+s

Big Degree

10s 20+s

4x-50x speedup

Practical Scheme: 
Preprocessing + Big-Degree + Chen’s
algorithm --> further 2-3x speedup
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Could DFVS help us for deadlock recovery?

R1: one lock owned
by only one thread

R2: one thread can 
wait on only one lock



Practical Application:
Deadlock Recovery

Could DFVS help us for deadlock recovery?

No overlapping cycles 

Cycle detection is enough

R1: one lock owned
by only one thread

R2: one thread can 
wait on only one lock



A Real System

• The Deadlock Immunity System

– OSDI ’08 (top system conference)
– Use cycle detection to enable deadlock 

immunity
– 10% overhead on average

• instrumentations, framework overhead, etc.



Conclusion

• Quantitative analysis of Chen’s FPT 
algorithm for DFVS

• New reduction rules
– With significant performance benefits
– Quantitative analysis



Open Problems

• Reduction rules when 2 ≤ |petal(u)| ≤ k ?
|petal(u)| ≥ (k+1), flower rule
|petal(u)| = 1, shortcut

• Kernelization for DFVS problem

• Better heuristics
Better approximation algorithm?



Thanks !



FPT search with different parameter 
k



Backup Slides
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Skew Separator

(F-F’) is acyclic.
Guess a toporder.

v1 v2 v3 vn…

G - F: Acyclic
u

Find (k-|F’|) 
vertices to block 
back edges go 
from vi to vj (i>j)

Skew separator 
problem. FPT 

algorithm using 
branching
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Example of Applying Reductions

4

5

6

8

3

7

K = 2.  FVS: 

Delete Parallel Edges

Delete Self Loops

Delete Dummy

Find a Flower

K = 1 

K = 0 and Acyclic 

Done

1 2



Generation Strategy
• Generation strategy

– The edges of connected DAG are ¼ of the 
total edge bound

– Each cycle has at most ¼ of nodes

– Generate cycles until reaching the edge bound


	Experimental Study of Directed Feedback Vertex Set Problem
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Algorithm Engineering for DFVS
	Directed Feedback Vertex Set�(DFVS)
	Directed Feedback Vertex Set�(DFVS)
	Directed Feedback Vertex Set�(DFVS)
	�DFVS vs. Undirected Feedback Vertex Set (UFVS)�
	Our Work
	Random Graph Generator
	A Non-trivial Task
	Chen’s Algorithm
	Chen’s Algorithm
	Chen’s Algorithm
	Chen’s Algorithm
	Chen’s Algorithm
	Chen’s Algorithm
	Chen’s Algorithm
	Chen’s Algorithm
	Start Configuration of Chen’s Algorithm
	Chen’s Original Algorithm
	Runtime Performance
	Low Edge Density: High Runtime 
	Many Independent Cycles: �High Runtime
	Many Independent Cycles: �High Runtime
	Many Independent Cycles: �High Runtime
	Many Independent Cycles: �High Runtime
	Reduction Rules
	Reduction Rules I (Chen)
	Reduction Rule II
	Reduction Rules III
	Reduction Rule IV
	Reduction Rule V
	Reduction Rule V
	Remarks
	Non-Reducible Graphs
	Non-Reducible Graphs
	Runtime with Reductions�(n small, k small)
	Reduced Size �(n large, k small)
	Preprocessing Time �(n large, k small)
	Reduced Size �(n large, k large)
	Which Rules are Powerful?
	Start Heuristics
	Evaluating Heuristics
	Evaluating Heuristics
	Evaluating Heuristics
	Evaluating Heuristics
	Practical Application:�Deadlock Recovery
	Practical Application:�Deadlock Recovery
	Practical Application:�Deadlock Recovery
	Practical Application:�Deadlock Recovery
	Practical Application:�Deadlock Recovery
	A Real System
	Conclusion
	Open Problems
	Thanks !
	FPT search with different parameter k
	Backup Slides
	Skew Separator
	Skew Separator
	Skew Separator
	Skew Separator
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Example of Applying Reductions
	Generation Strategy

