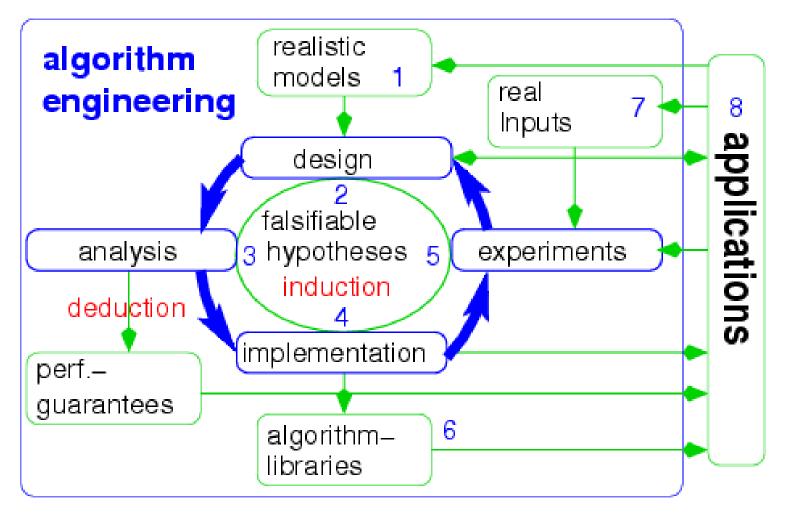
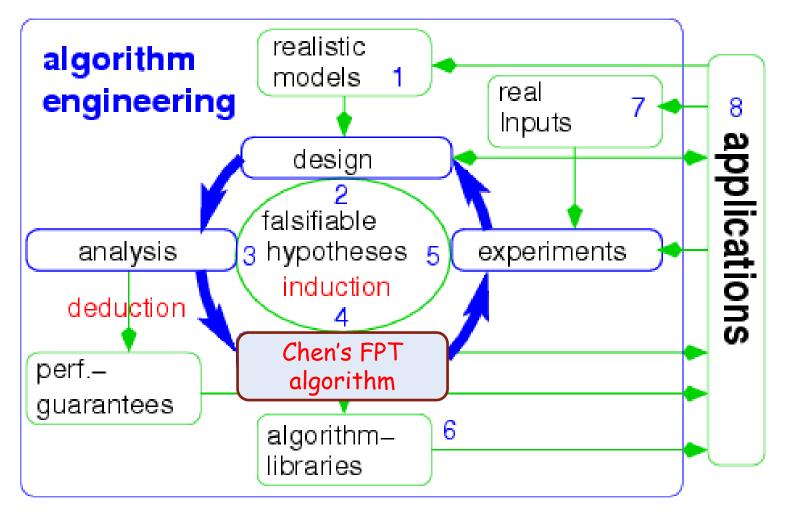
Experimental Study of Directed Feedback Vertex Set Problem

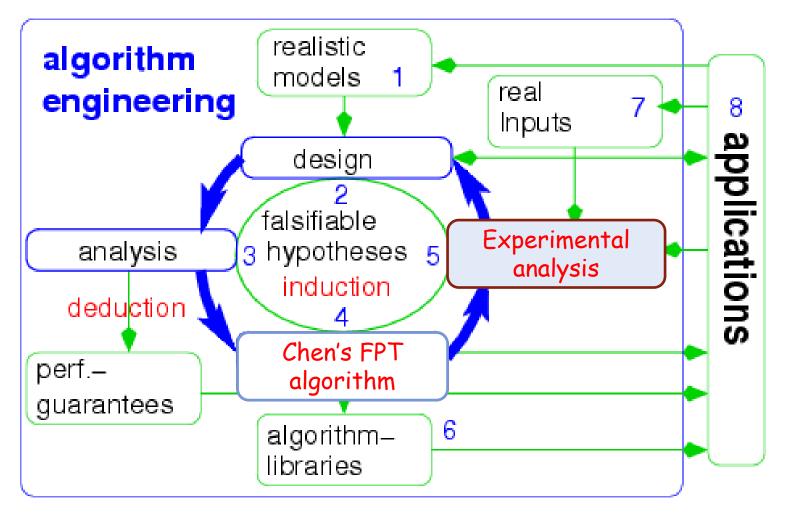
Xi Wu

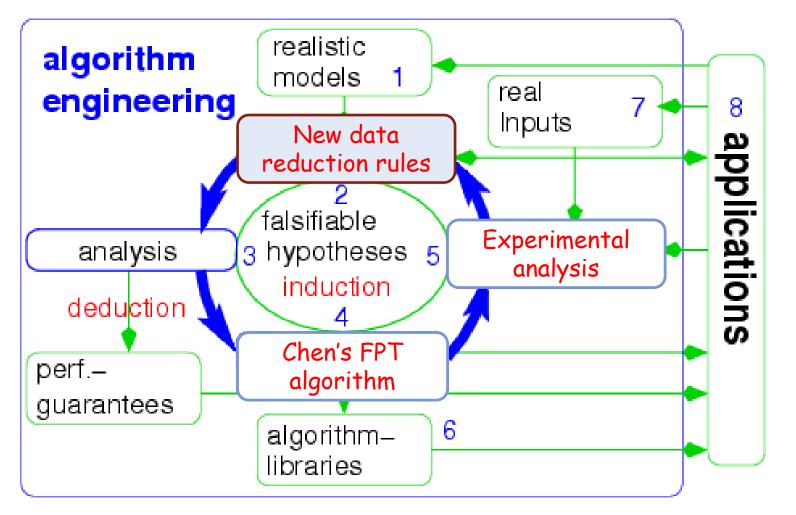
With Rudolf Fleischer and Liwei Yuan

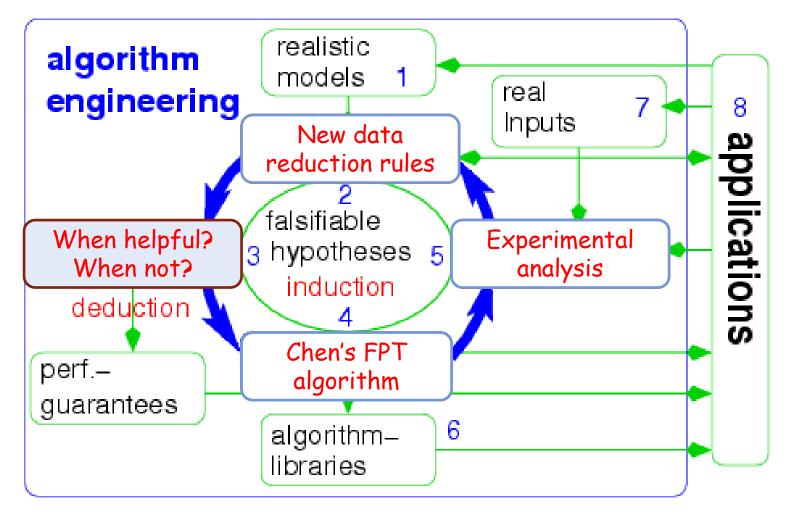
Fudan University, Shanghai

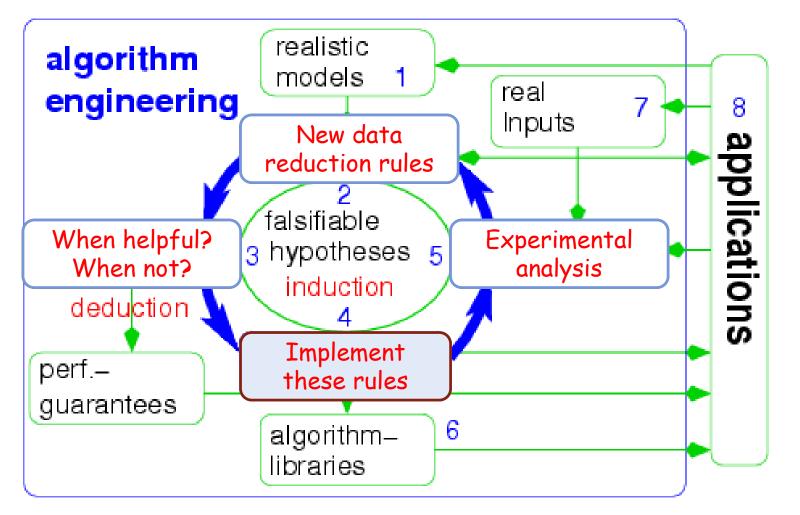


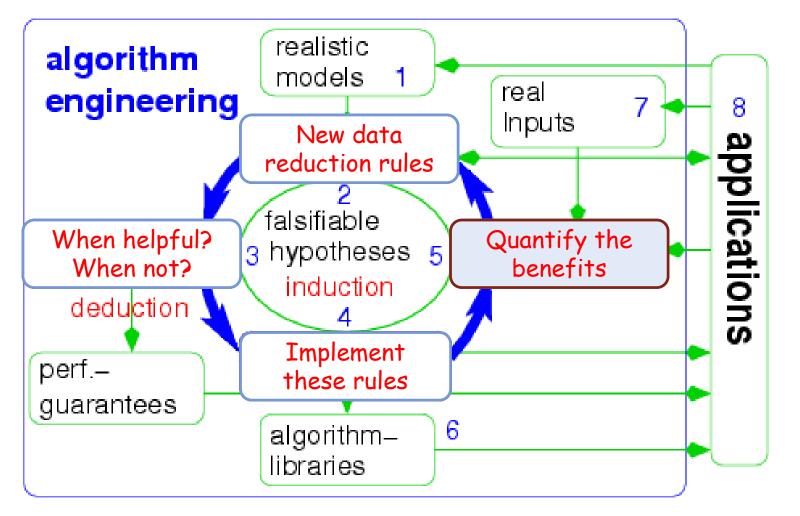


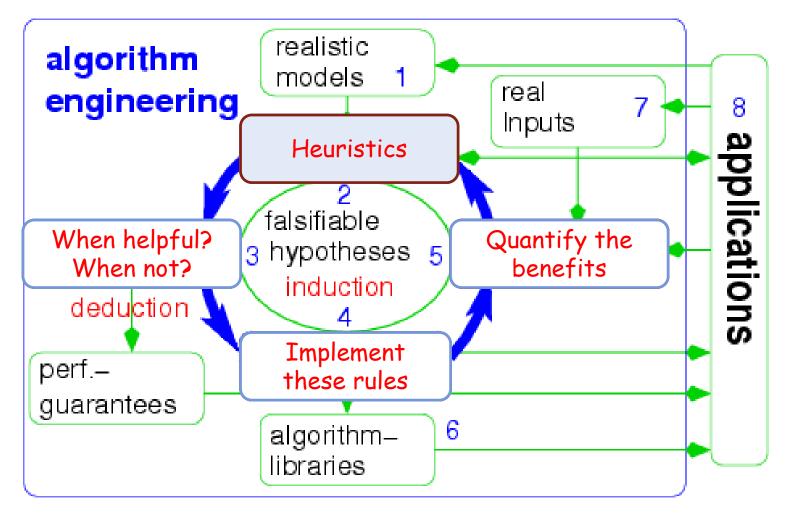


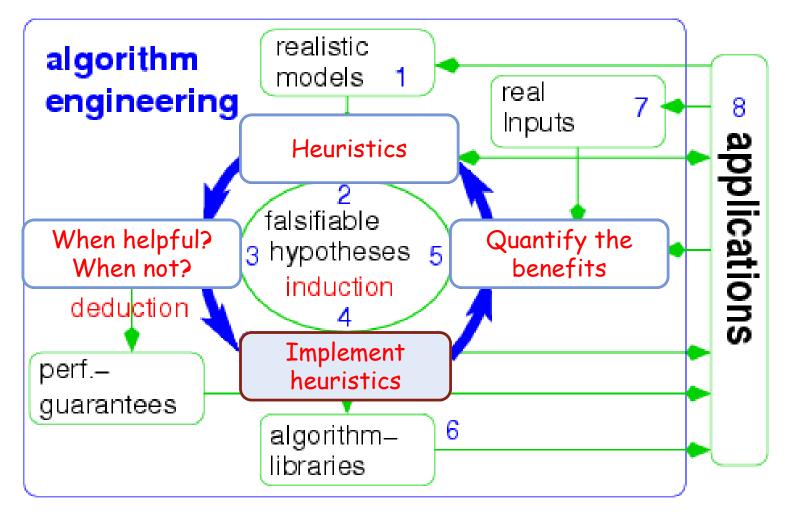


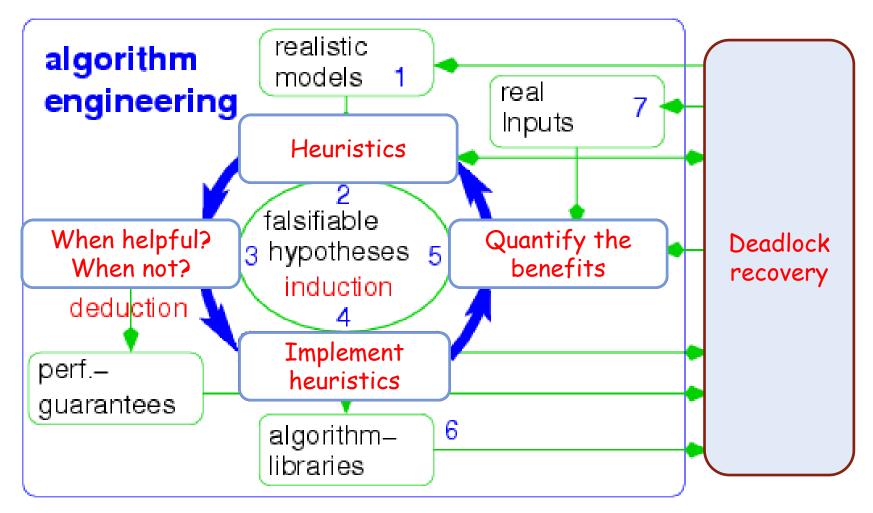






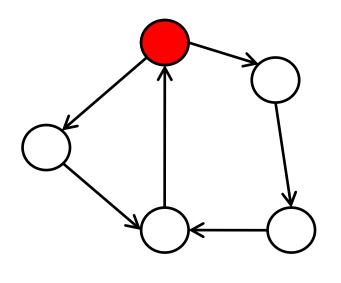






Directed Feedback Vertex Set (DFVS)

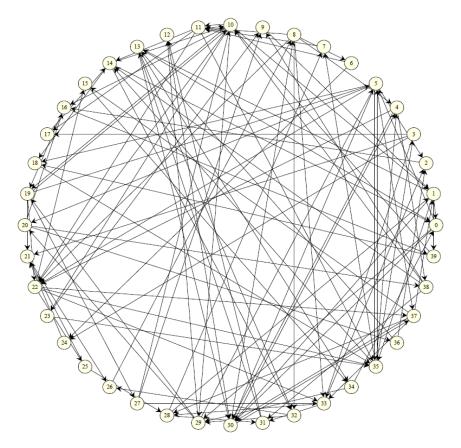
Find k vertices to destroy all cycles



1-FVS

Directed Feedback Vertex Set (DFVS)

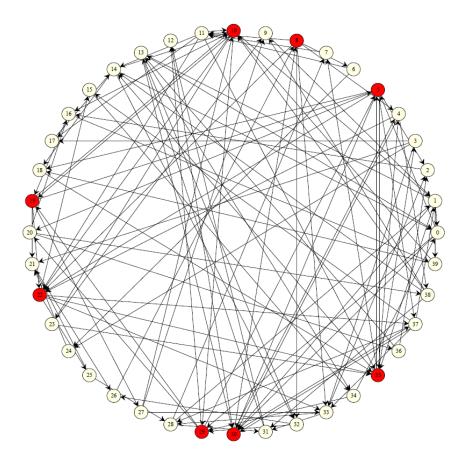
Find k vertices to destroy all cycles



What about this one with k=8?

Directed Feedback Vertex Set (DFVS)

Find k vertices to destroy all cycles



What about this one with k=8?

Minimum DFVS is NP-hard

DFVS vs. Undirected Feedback Vertex Set (UFVS)

Both NP-hard, but UFVS is better understood

	DFVS	UFVS
Approximation	O(min{T*logT*loglogT*, T*logN loglogN)-approximation [Even '98] (T* is the optimum fractional solution)	2-approximation [Bafna '1999]
FPT algorithm	O(k! 4 ^k n ^{O(1)}) [Chen STOC'2008]	0(4 ^k k n) [Becker '2000]
Kernelization	Polynomial kernel?	Quadratic kernel [Thomasse SODA'2008]

Our Work

- Test engine: random graph generator Controlling various parameters
- Experimental study of Chen's FPT algorithm for DFVS [Chen STOC'2008] With various parameters
- Data reductions and heuristics Quantify the benefits
- Application: deadlock recovery DFVS not more helpful than cycle detection

Random Graph Generator

- Goal: difficult, random graphs
- Parameters controlled:

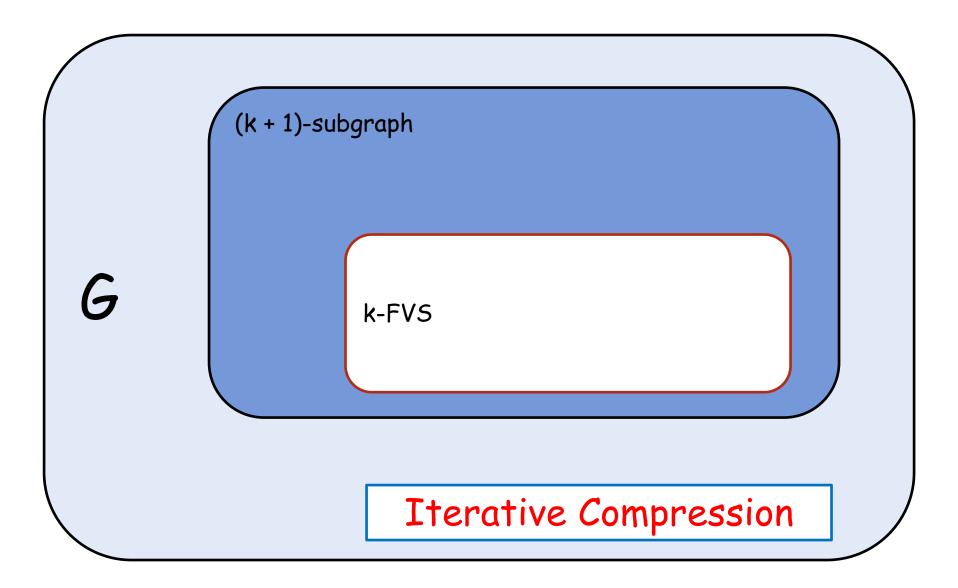
 n: Number of nodes
 k: Size of the minimum FVS
 edge density: ed = #edges/n
- A nontrivial task...

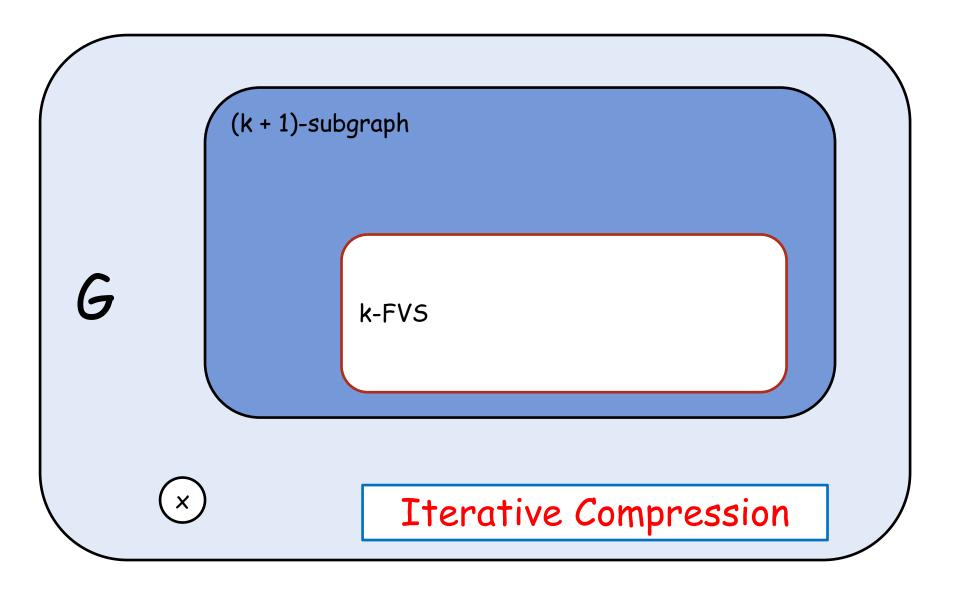
A Non-trivial Task

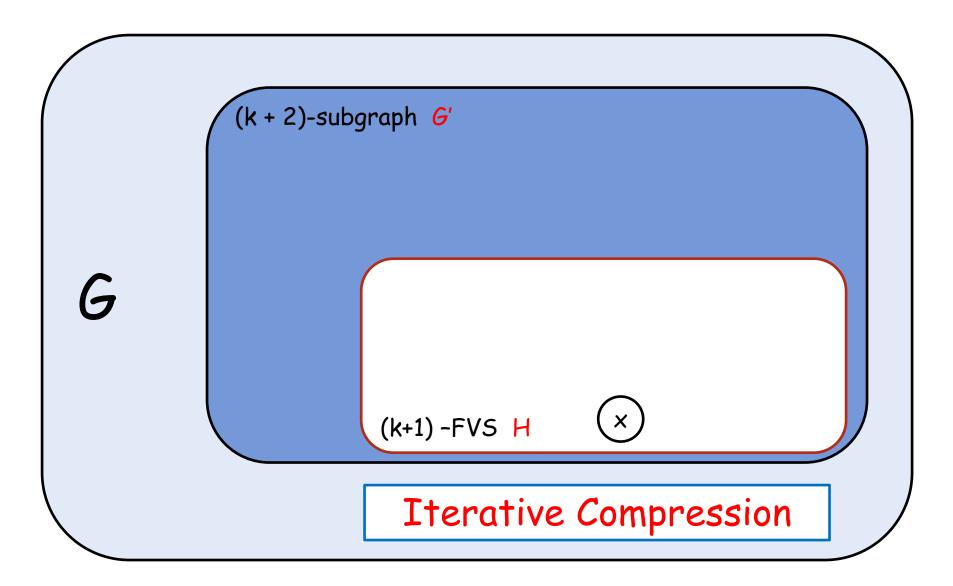
Spanning tree
 Wilson's algorithm

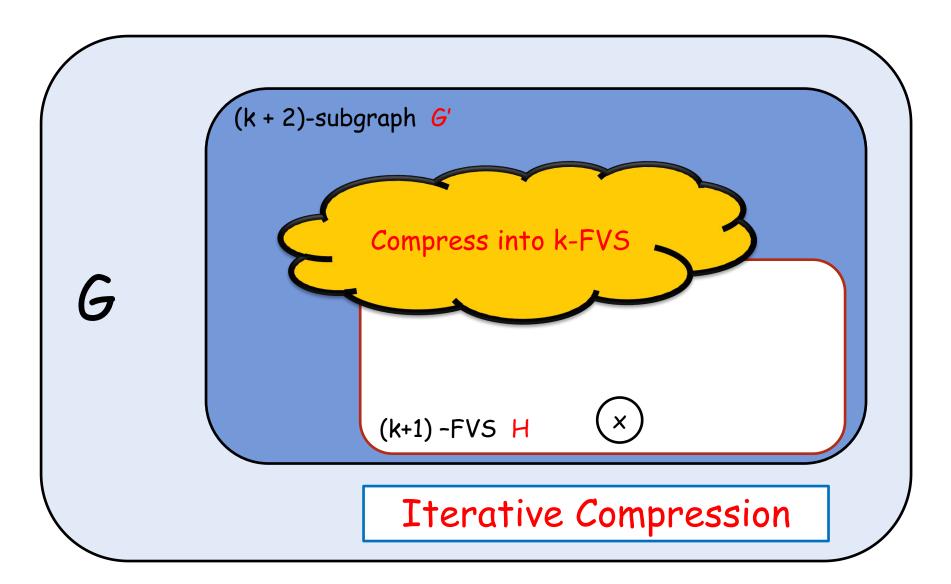
 Connected DAG Melancon's algorithm

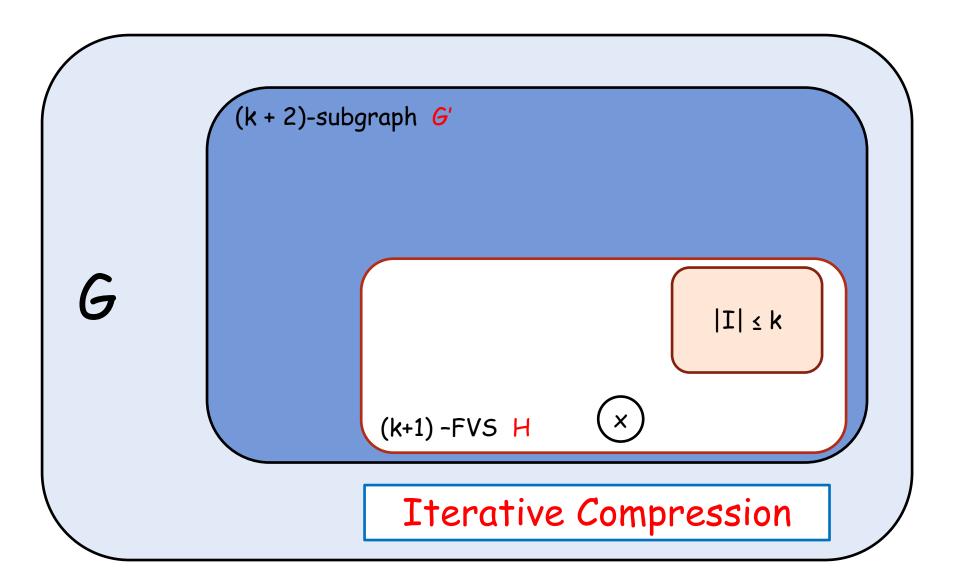
• Control solution size, overlapping cycles, edge density ...

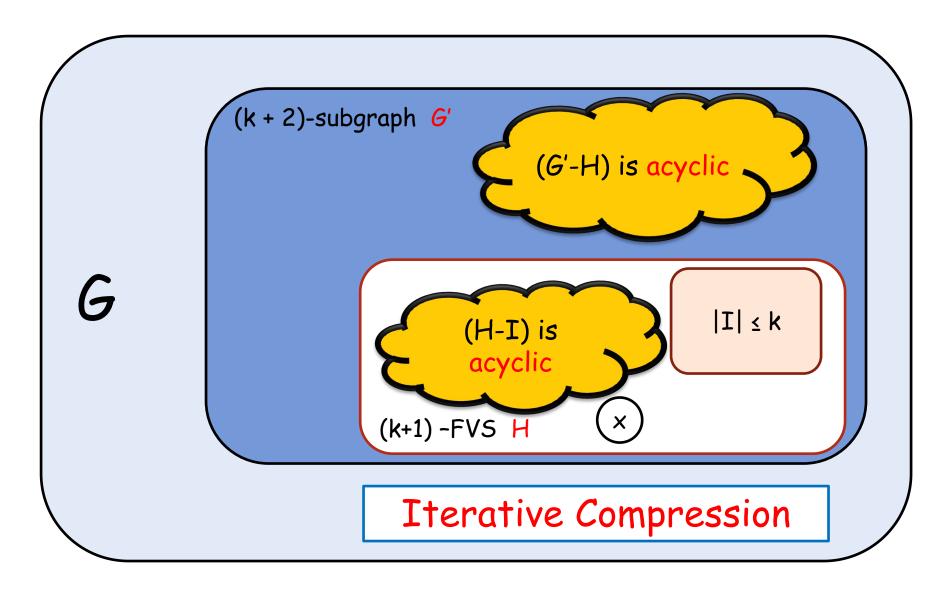


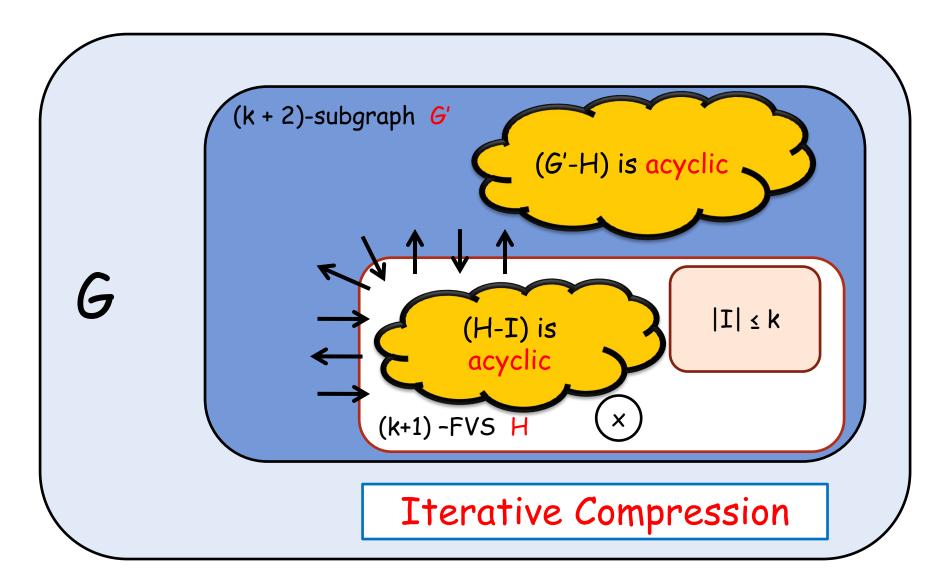


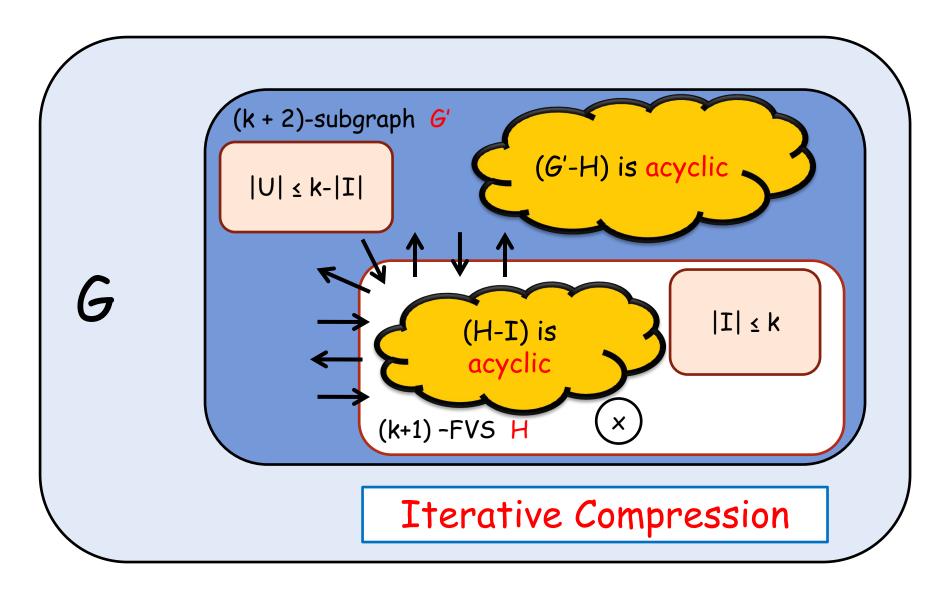












Start Configuration of Chen's Algorithm

- Consider heuristic solution X:
 - choose a k-subset Y of X
 - start with S = (G (X Y))

If X is good, then better performance

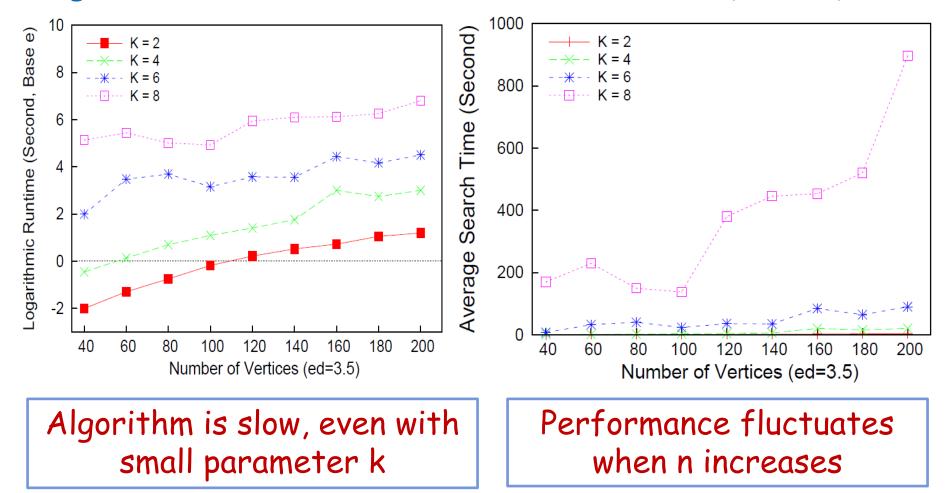
Chen's Original Algorithm

- Configuration
 - n: from 40 to 200, step by 20
 - k: in {2, 4, 6, 8}
 - ed in {2.0, 3.0, 3.5, 4.0}
- Generate 10 graphs for (n, k, ed) Record max, min and average
- Timeout: 3 hours Count as 3 hours

Runtime Performance

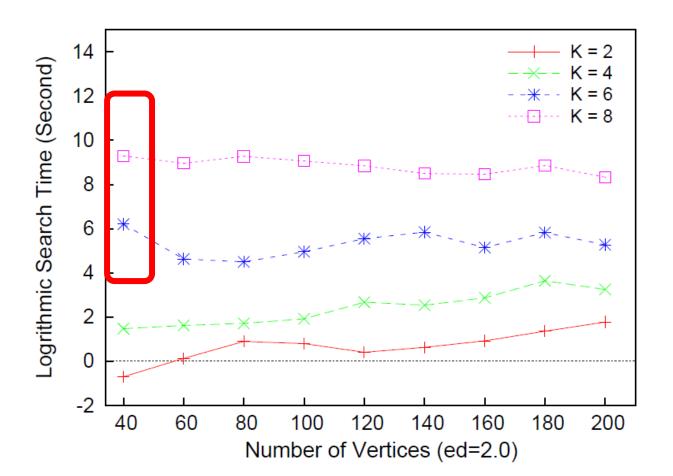
Logarithmic runtime (ed=3.5)

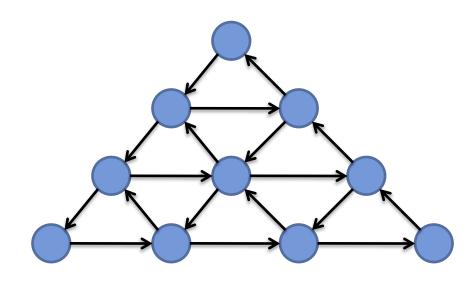
Runtime (ed=3.5)

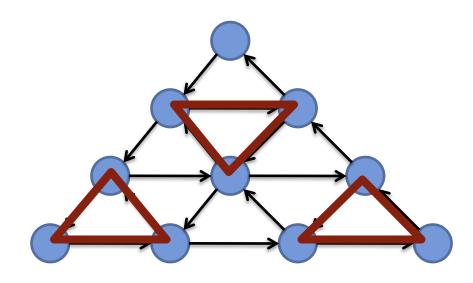


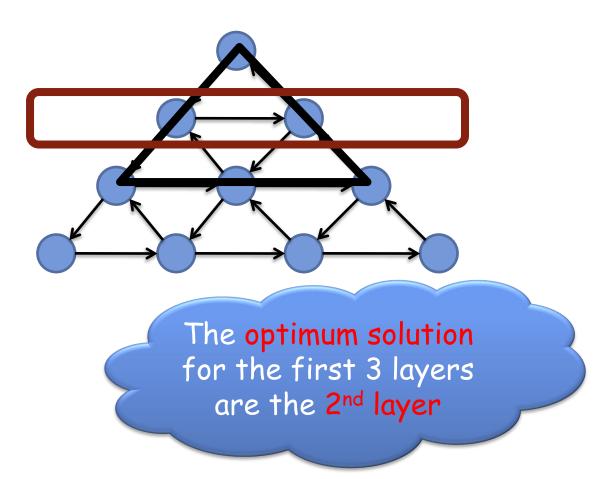
Low Edge Density: High Runtime

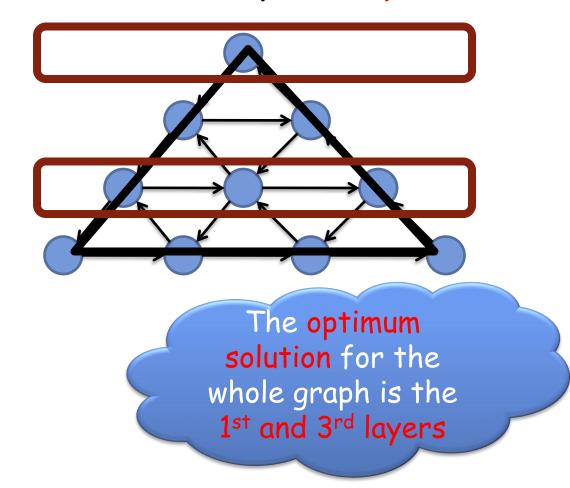
Worst performance for n=40











Reduction Rules

- Reduction: in polynomial time
 - reduce (G, k) to (G', k')
 - (G, k) is a YES-instance iff (G', k') is a YESinstance
- Kernelization
 - -|G'| is bounded by f(k)
 - $-\mathbf{k}' \leq \mathbf{k}$

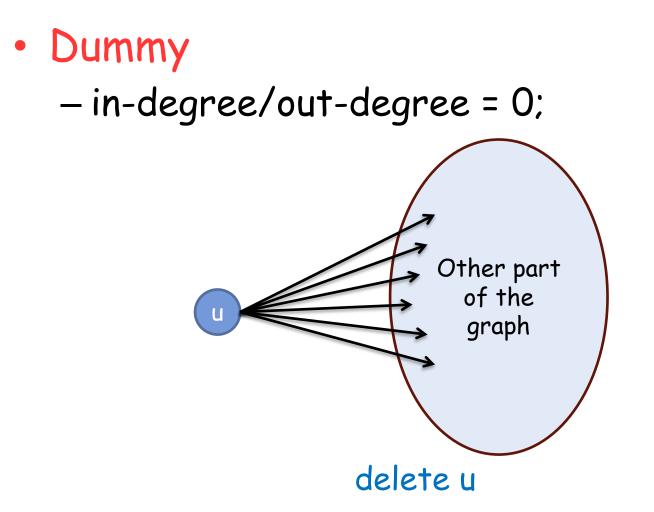
Reduction Rules I (Chen)

• Trivial rules:

- Self-loops: add node to DFVS

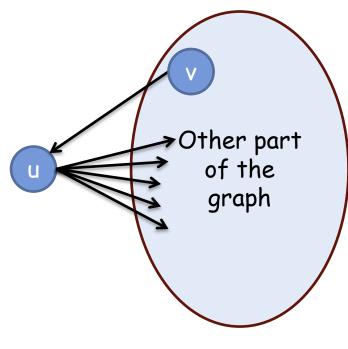
- Parallel-edge: delete multiple edges

Reduction Rule II



Reduction Rules III

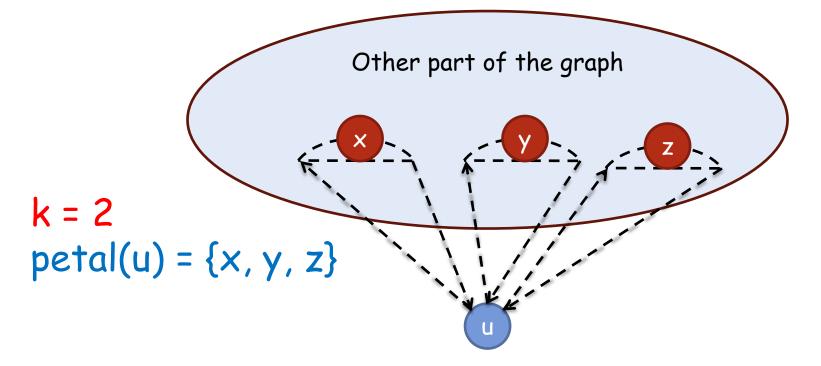
- Chain
 - in-degree/out-degree = 1;



merge u and v

Reduction Rule IV

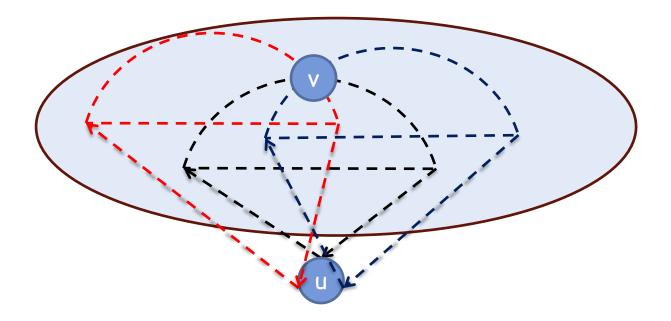
- Flower
 - (k+1) vertex-independent cycles exactly intersecting on u: add u to DFVS



Reduction Rule V

• Shortcut

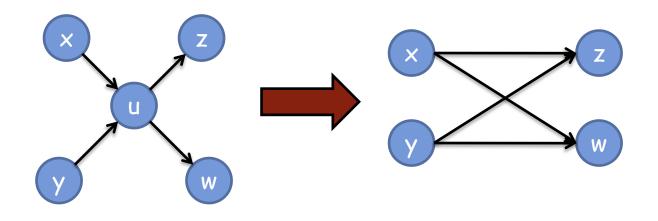
- petal(u) = {v}: bypass u



Reduction Rule V

Shortcut

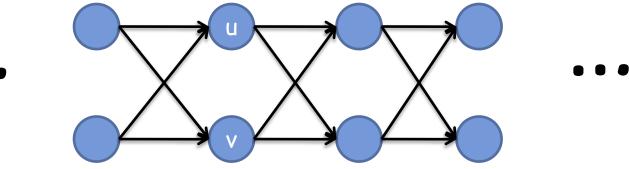
 petal(u) = {v}: bypass u



• These rules do NOT give a kernelization

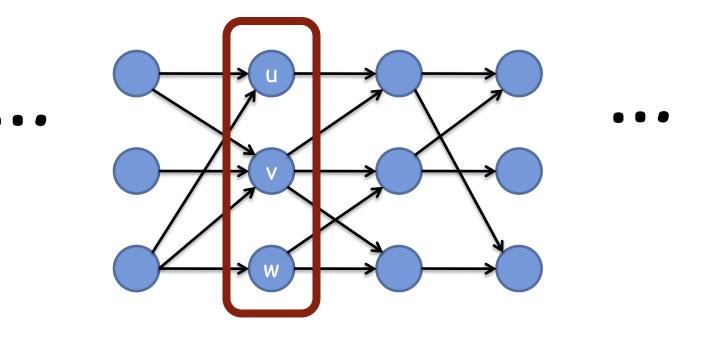
• We need rules when $2 \le |petal(u)| \le k$

Non-Reducible Graphs



| petal(u) | = | petal(v) | = 2 u, v are useless

Non-Reducible Graphs

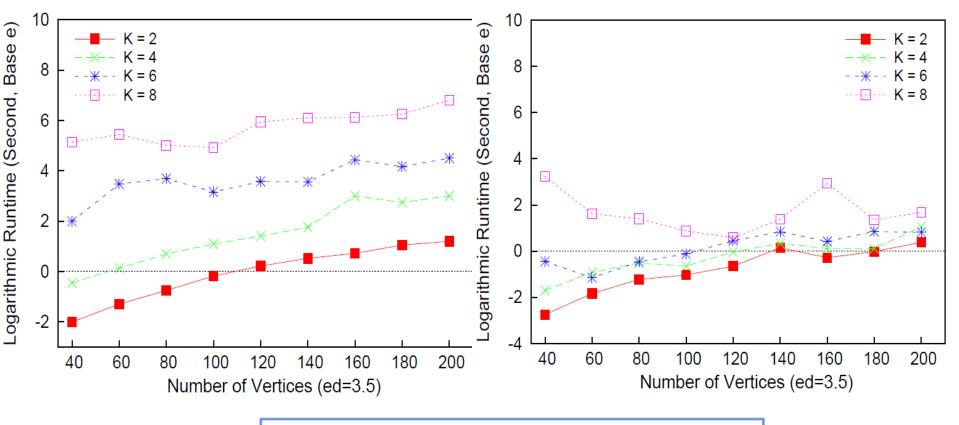


When can we safely reduce u, v, w?

Runtime with Reductions (n small, k small)

No reductions

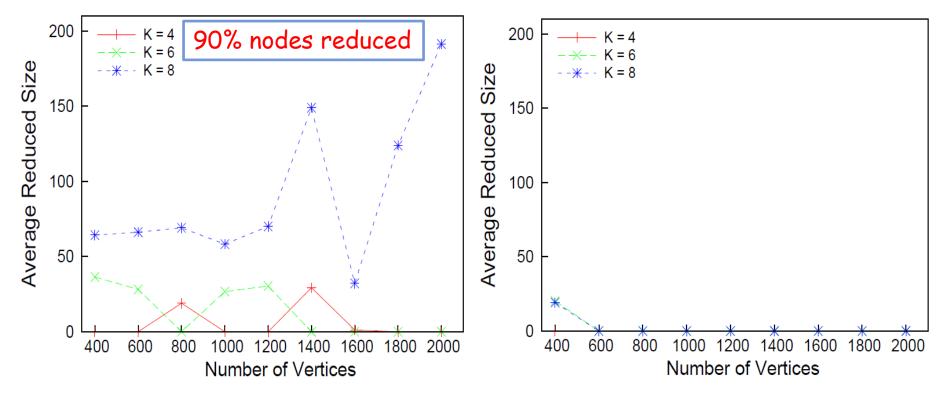
With reductions



4X ~ 140X speedup

Reduced Size (n large, k small)

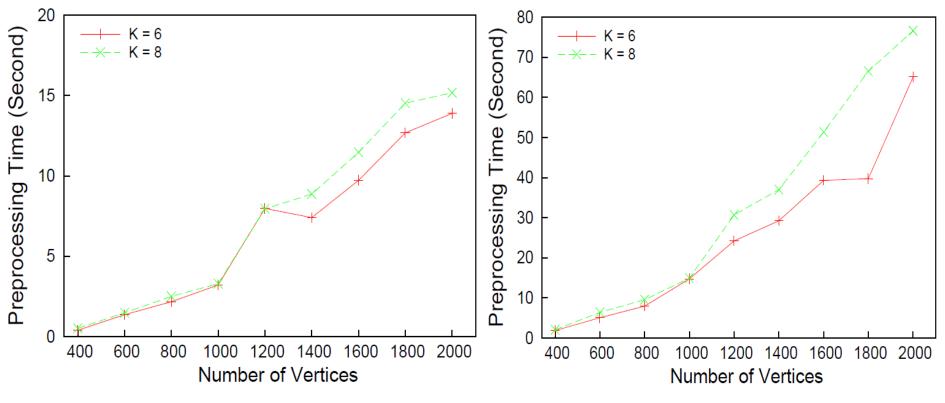
ed = 2.0



Many flowers found !

Preprocessing Time (n large, k small)

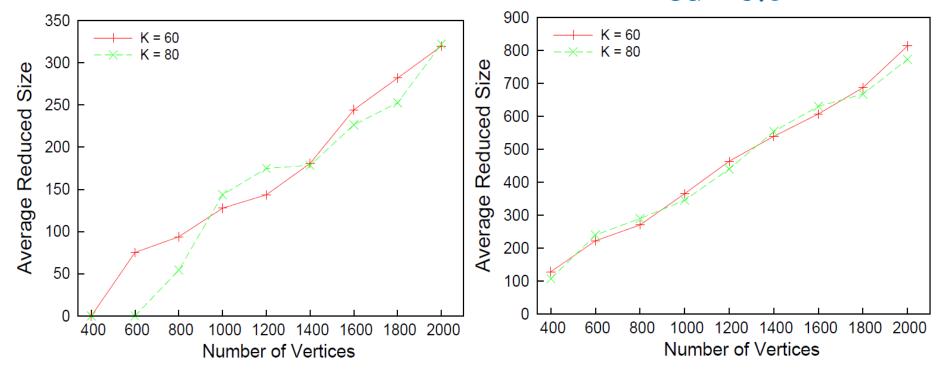
ed = 2.0



Scales linearly with n and ed

Reduced Size (n large, k large)

ed = 2.0



Now flower reduction does not work well

Which Rules are Powerful?

• n = 1000 and ed = 3.0

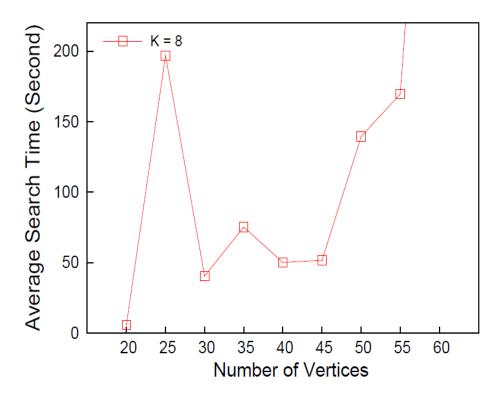
Rules	k = 4	k = 40
Chain	607	377
Dummy	785	679
Flower	996	10000
Chain+Dummy	522	377
Chain+Flower	366	377
Dummy + Flower	151	377
Dummy + Dummy + Flower	0	377

No flowers found...

Start Heuristics

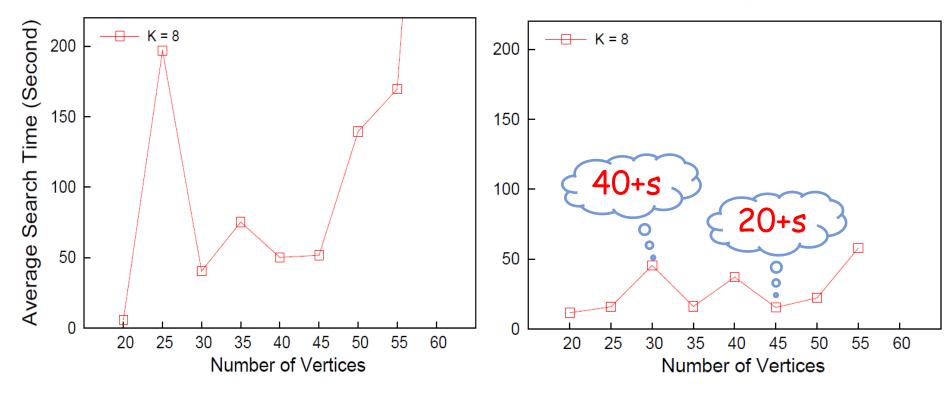
- Three heuristics:
 - Big-Degree
 pick biggest total degree vertices until acyclic
 - Even's Fractional Approximation pick the most heavy weight set
 - Even's Full Approximation pick the approximation solution

No heuristic



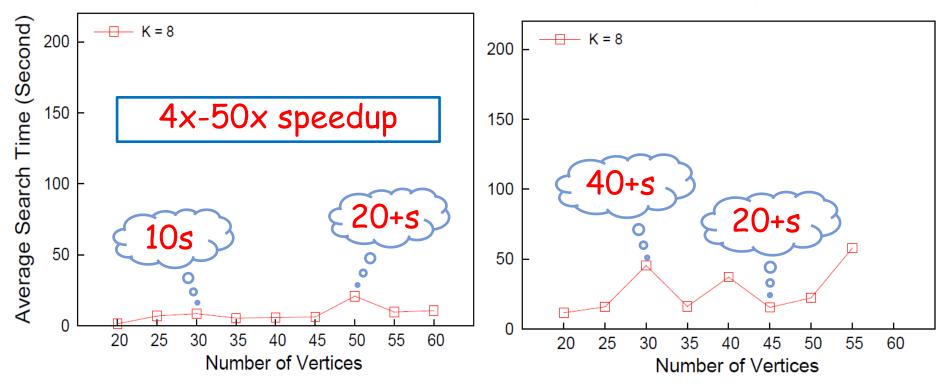
No heuristic

Fractional Approximation



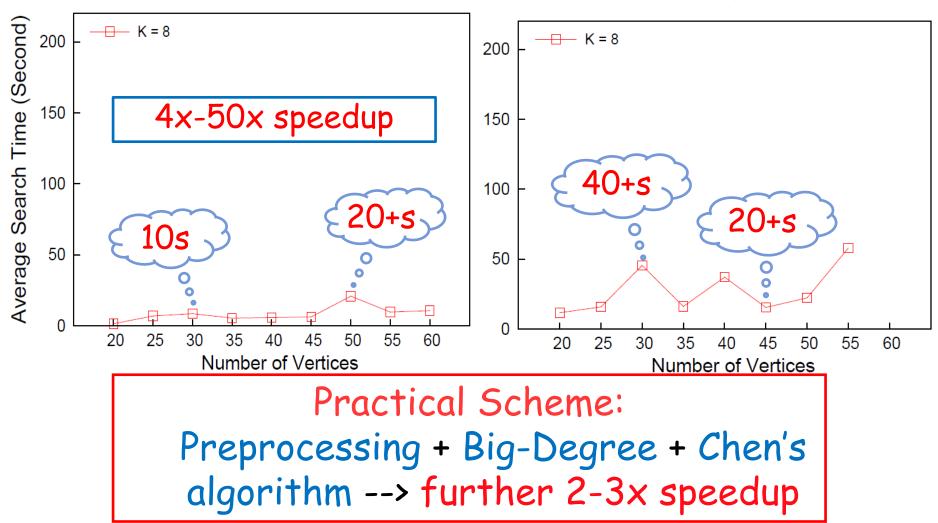
Big Degree

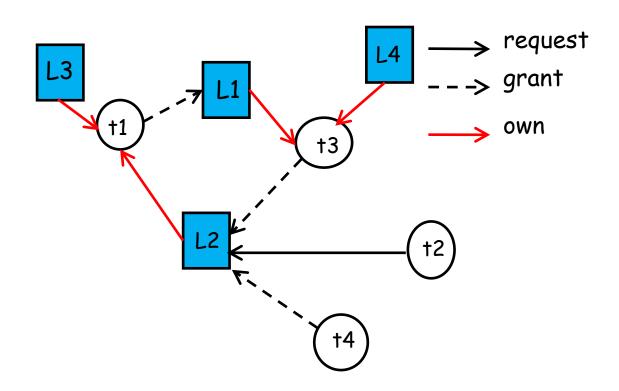
Fractional Approximation

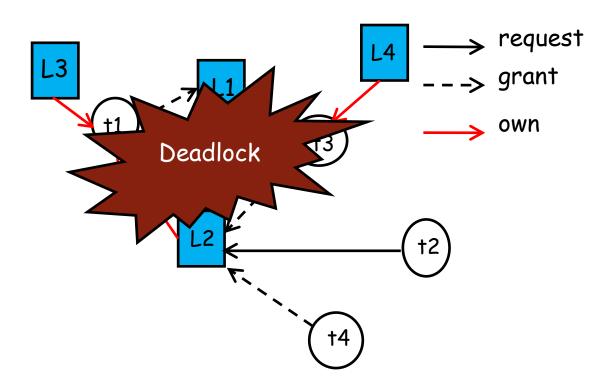


Big Degree

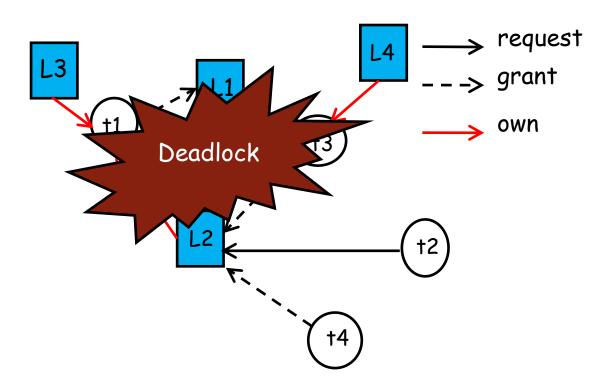
Fractional Approximation







Could DFVS help us for deadlock recovery?



Could DFVS help us for deadlock recovery?

R1: one lock owned by only one thread

R2: one thread can wait on only one lock

Could DFVS help us for deadlock recovery?

R1: one lock owned by only one thread

R2: one thread can wait on only one lock

No overlapping cycles

Cycle detection is enough

A Real System

- The Deadlock Immunity System
 - OSDI '08 (top system conference)
 - Use cycle detection to enable deadlock immunity
 - 10% overhead on average
 - instrumentations, framework overhead, etc.

Conclusion

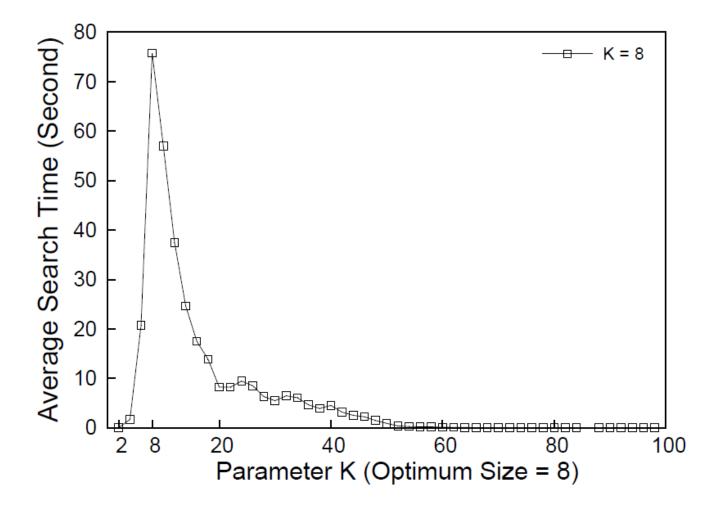
- Quantitative analysis of Chen's FPT algorithm for DFVS
- New reduction rules
 - With significant performance benefits
 - Quantitative analysis

Open Problems

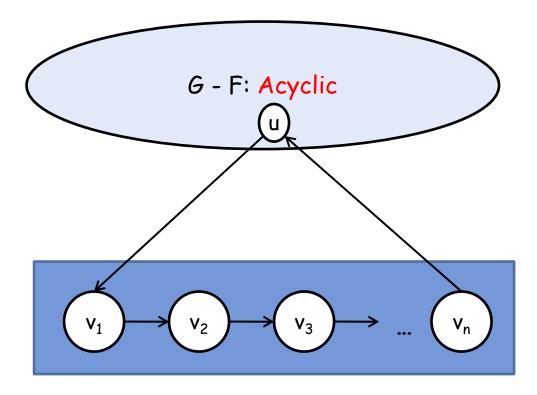
- Reduction rules when 2 ≤ |petal(u)| ≤ k?
 |petal(u)| ≥ (k+1), flower rule
 |petal(u)| = 1, shortcut
- Kernelization for DFVS problem
- Better heuristics
 Better approximation algorithm?

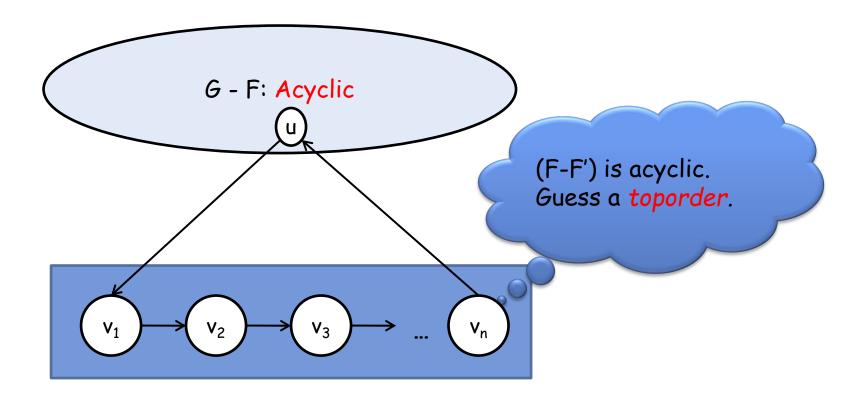
Thanks !

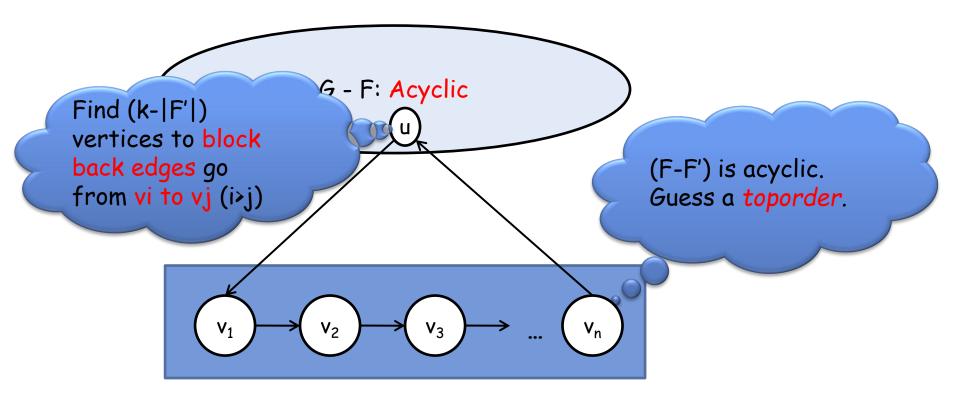
FPT search with different parameter k

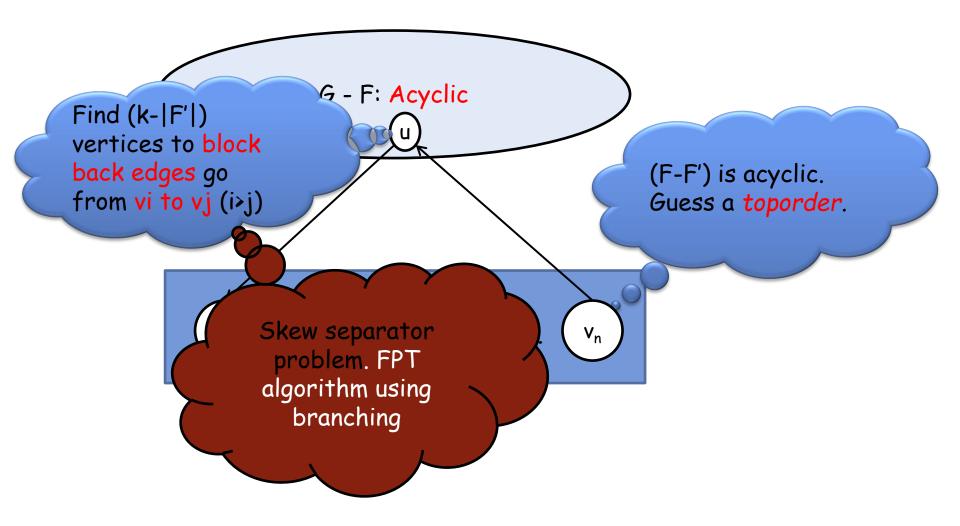


Backup Slides



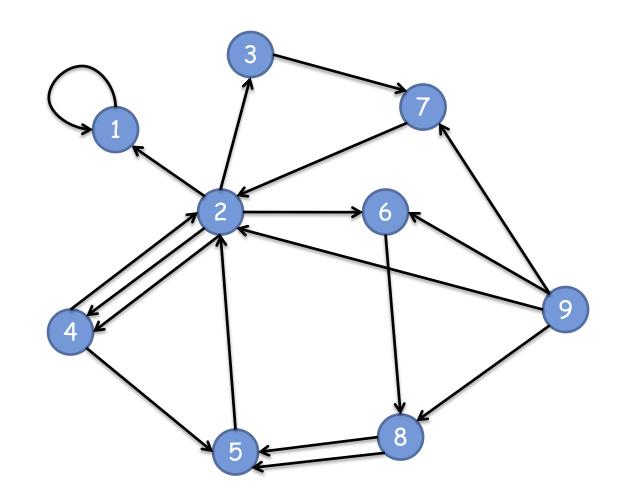






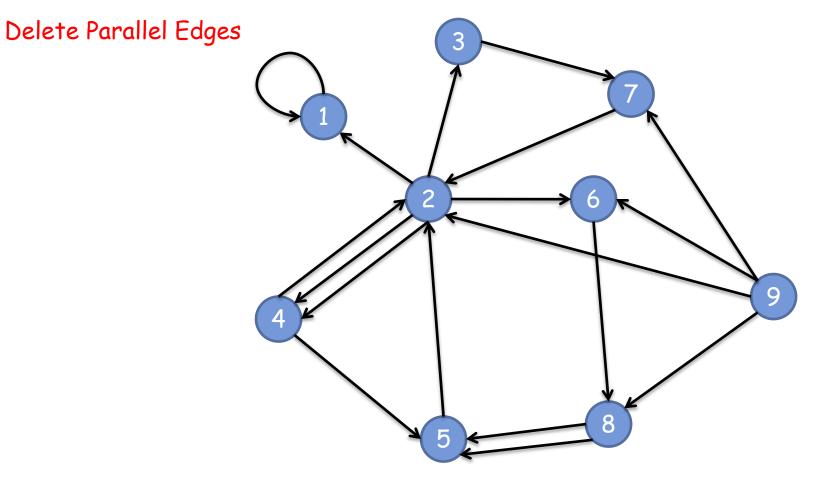
Example of Applying Reductions

K = 2. **FVS**:



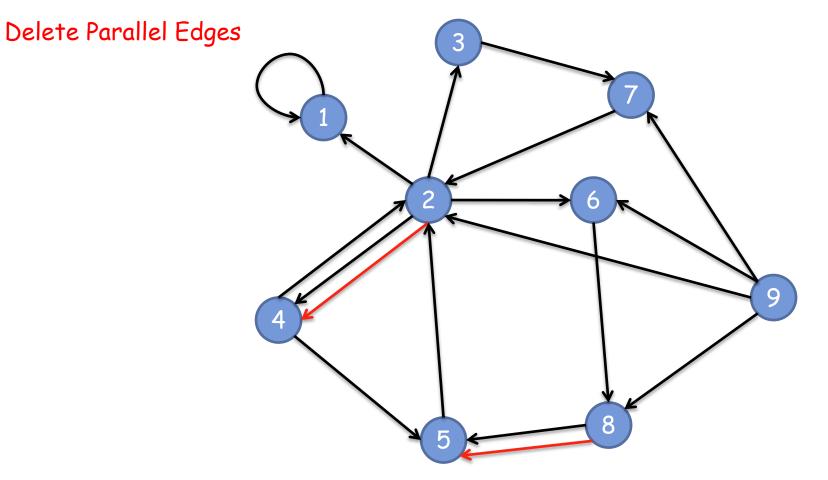
Example of Applying Reductions

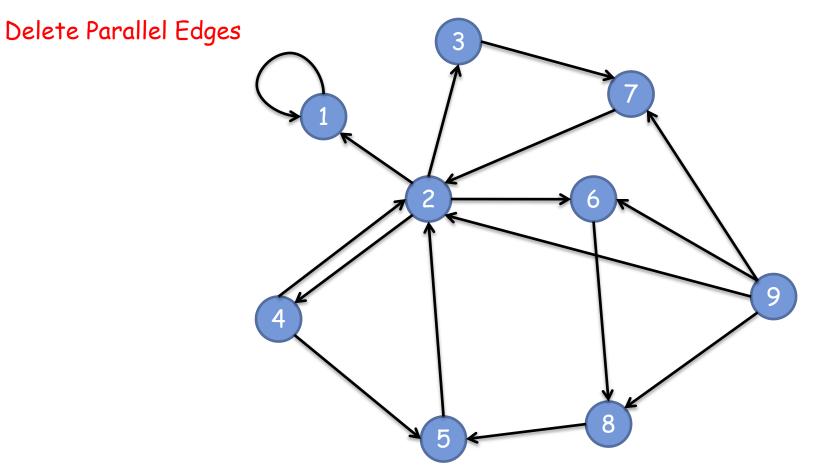
K = 2. FVS:

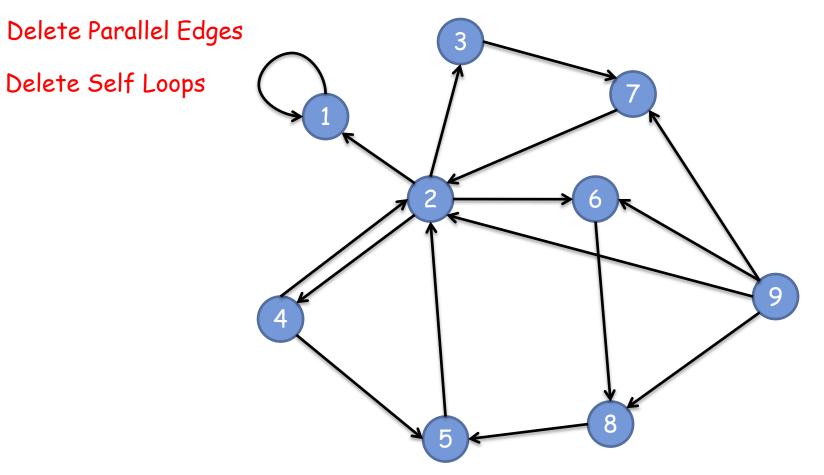


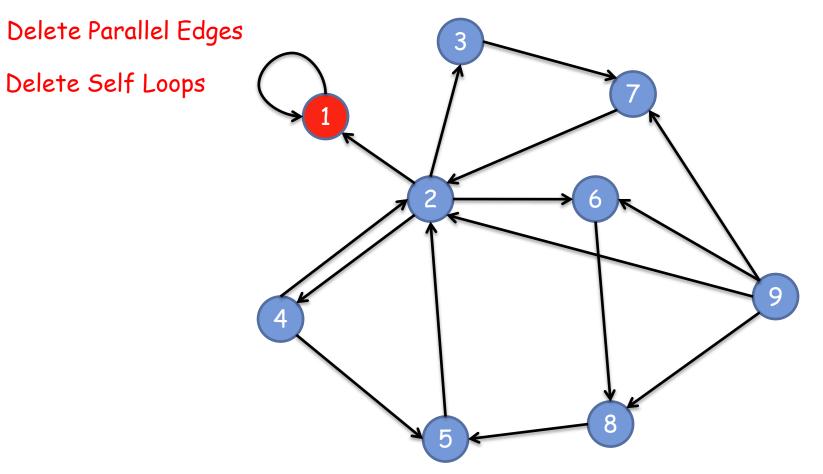
Example of Applying Reductions

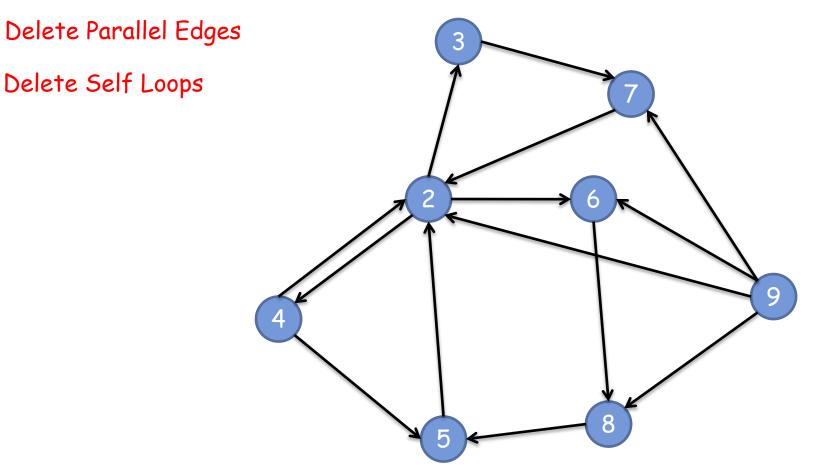
K = 2. FVS:

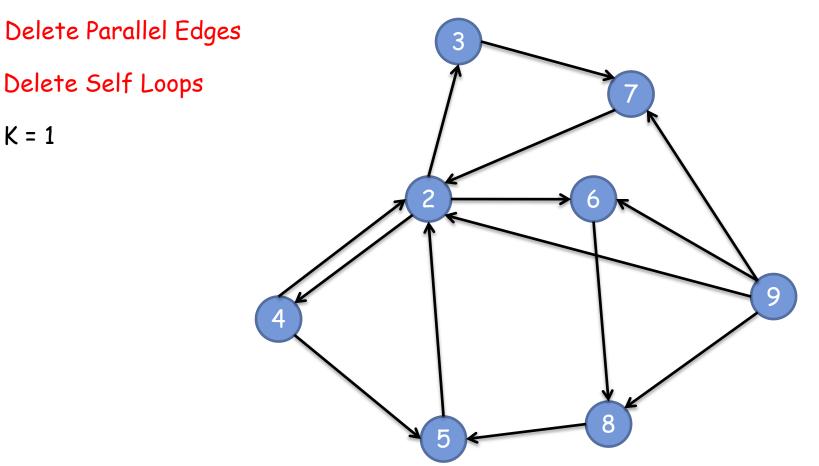






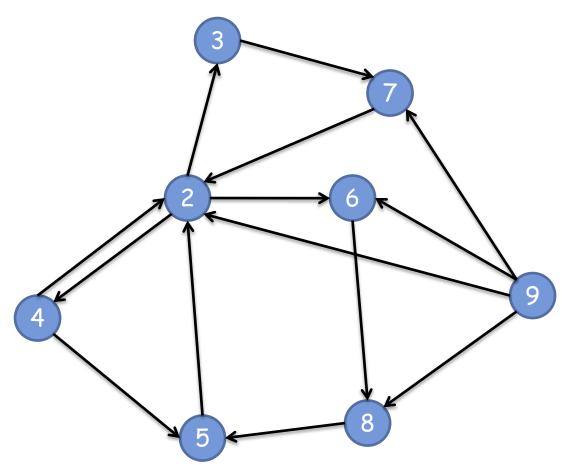






K = 2. FVS: 1 Delete Parallel Edges Delete Self Loops

K = 1



K = 2. FVS: **Delete Parallel Edges** Delete Self Loops Delete Dummy g

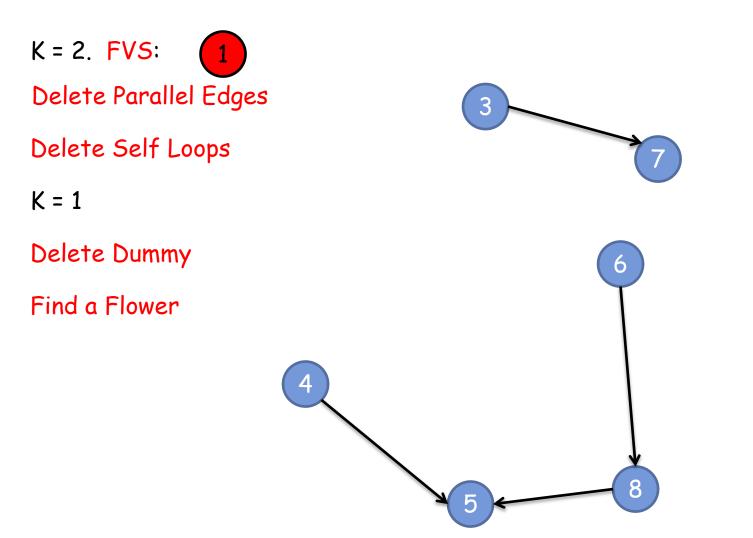
K = 1

K = 2. FVS: **Delete Parallel Edges** Delete Self Loops K = 1 Delete Dummy 9

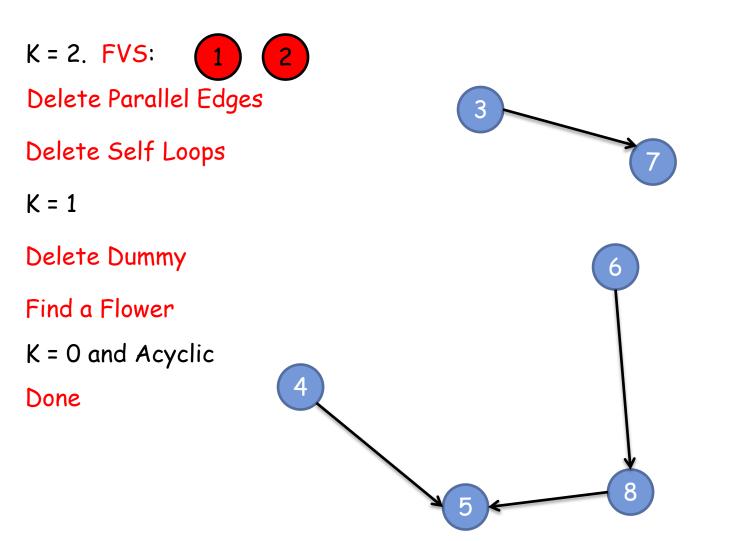
K = 2. FVS: **Delete Parallel Edges** Delete Self Loops K = 1 **Delete Dummy** h 8

K = 2. FVS: **Delete Parallel Edges** Delete Self Loops K = 1 Delete Dummy b Find a Flower 8 5

K = 2. FVS: **Delete Parallel Edges** Delete Self Loops K = 1 Delete Dummy 2 b Find a Flower 8 5







Generation Strategy

- Generation strategy
 - The edges of connected DAG are $\frac{1}{4}$ of the total edge bound
 - Each cycle has at most $\frac{1}{4}$ of nodes
 - Generate cycles until reaching the edge bound