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• From Merriam-Webster: 
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compression: noun \kəm-ˈpre-shən\ 
 
conversion of data in order to reduce the space 
occupied or bandwidth required. 



 
 

• One point should be added: keep some properties. 
 

Let us examine “compression” in  
theoretical computer science. 
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Compressing NP-hard problem? 

𝑃-time, preserving membership. 

𝐼 𝐼𝐼 
|𝐼𝐼|<|𝐼| 

Repeat ! 
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𝐼 𝐼𝐼 
|𝐼𝐼|<|𝐼| 

Repeat ! 

Compressing NP-hard problem? 

Implies P = NP ! 
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Kernelization: Compression in 
Parameterized Complexity 

• Kernelization for 𝐿 is an algorithm: 
– Input: (𝑥,𝑘), 
– Output: 𝑥′,𝑘′  persereving membership and 

• 𝑥′ ≤ 𝑓(𝑘) for some function 𝑓. 
• 𝑘′ is bounded by a function of 𝑘. 

 
• Many nice upper bounds. 

 
• What about lower bounds? 
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Machinery for  
super-poly kernel lower bound 

 
• Composition: an important notion. 

– Input: 𝑥1,𝑘 , … , (𝑥𝑡 ,𝑘) 
– Output: (𝑦,𝑘′) 
– Constraints: 

• Polynomial time computable 
• 𝑦 ∈ 𝐿 ⟺ 𝑥𝑖 ∈ 𝐿 for some 𝑖 
• 𝑘′ ≤ poly(𝑘) 
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Theorem [BDFH ‘08, FS ‘08] 
 
Assume 𝐿�  is NP -hard. If 𝐿  composes and has 
polynomial kernel then PH collapses. 
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Compose Poly- 
kernel 

PH  
collapses 



Polynomial Kernel Lower Bound 

• Question: Polynomial kernel lower bound? 
 

• [DvM ‘10] gives some answers: 
– Vertex-Cover has no size-𝑂(𝑘2−𝜀) kernel for any 𝜀 > 0. 
– Same for Π-Vertex Deletion. 
– Through sparsification lower bound. 

 
• Still, kernel lower bounds for many natural 

problems with poly kernel remain open. 
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Our Contribution 
• Ω(𝑘𝑑−3−𝜖) kernel lower bound for:  

– 𝑑-Set Packing, 𝑑-Set Covering, 𝑑-Hitting Set with Bounded 
Occurrences (through d-BRPC). 

 
• Ω(𝑘𝑑−4−𝜖) kernel lower bound for: 

–  𝑑-Clique Packing. 
 

• Extend all known super-polynomial kernel lower bounds to 
super-quasi-polynomial. 
– Assume that exponential time hierarchy does not collapse. 
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Weak Composition 
 

• Weak 𝑑-composition from 𝐿1 to 𝐿2. 
– Input: 𝑥1,𝑘 , … , (𝑥𝑡 ,𝑘) of 𝐿1. 
– Output: (𝑦,𝑘′) of 𝐿2. 
– Constraints: 

• Polynomial time computable. 
• 𝑦 ∈ 𝐿2 ⟺ 𝑥𝑖 ∈ 𝐿1  for some 𝑖. 
• 𝑘′ ≤ 𝑡1/𝑑𝑝(𝑘) for some fixed polynomial 𝑝 ⋅ . 
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Weak Composition 

Theorem 
Assume 𝐿1� is 𝐍𝐍-hard. If there exists a weak 𝑑-
composition from 𝐿1 to 𝐿2, and 𝐿2 has a kernel of size 
𝑂 𝑘𝑑−𝜀  for some 𝜀 > 0, then 𝐍𝐏 collapses. 
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Weak Composition 

Weak-𝒅-
compose 

𝑶 𝒌𝒅−𝜺 -
kernel 

PH  
collapses 
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Main Problem for Lower Bounds 
 
𝑑-BRPC  
Instance 𝐺 = 𝑁 ⊎ 𝑇,𝐸 ,𝑘 ,  
(∀𝑣 ∈ 𝑁) deg 𝑣 = 𝑑. 
 
Membership ∃𝑁′ ⊆ 𝑁, 𝑁′ = 𝑘  
(∀𝑣 ∈ 𝑇)(|Γ 𝑣,𝑁𝑁 | = 1) 
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𝑁 

𝑇 

 



Main Problem for Lower Bounds 
 
𝑑-BRPC  
Instance 𝐺 = 𝑁 ⊎ 𝑇,𝐸 ,𝑘 ,  
(∀𝑣 ∈ 𝑁) deg 𝑣 = 𝑑. 
 
Membership ∃𝑁′ ⊆ 𝑁, 𝑁′ = 𝑘  
(∀𝑣 ∈ 𝑇)(|Γ 𝑣,𝑁𝑁 | = 1) 
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𝑁 

𝑇 

Trivial kernel:  
removing duplicated non-terminals gives a kernel 
of size 𝑘𝑑

𝑑 = 𝑂(𝑘𝑑). 

 



Main Lower Bound Result 

(Our result) 
Unless 𝐍𝐏 collapses, 𝑑-BRPC has no kernel of size 
𝑂 𝑘𝑑−3−𝜀 , for any 𝜀 > 0. 
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Proof of the main result 
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Weak Composition for 𝑑-BRPC  
• Basic idea: colors and IDs [DLS, ICALP ‘09] 

 
• Source problem: 
    𝑐𝑐𝑐-3-BRPC 

– Instance: BRPC instance, with a color mapping 𝑐𝑐𝑐:𝑁 →
{1, … , 𝑘}. 

– Question: same question and additionally, 𝑁𝑁 consists of 
vertices of different colors? 
 

• Target problem: 𝑑 + 3 -BRPC. 
 
• Compose Θ(𝑡𝑑) source instances to target. 
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Composition: General Setup 
• Given input sequence 𝐺1, 𝑐𝑐𝑐1, 𝑘 , … , (𝐺𝑛, 𝑐𝑐𝑐𝑛, 𝑘) 

– Assign 𝐼𝐼𝑖 to instance 𝑁𝑖, 𝐼𝐼𝑖  ⊆ 1, … 𝑡 + 𝑑 , 𝐼𝐼𝑖 = 𝑑 

– Observe 𝑡 + 𝑑
𝑑 = Θ(𝑡𝑑) 

 
• Overview of composition 

– First step: compose to BPC (some vertices have 
unbounded degree). 

– Second step: construct equality gadget to get regular 
degree instance. 
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BRPC to BPC (1/3) 

 
 
 
 
 
 
 

 
 
 

Set 𝑘𝐼 = 𝑘 + 𝑡  
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BRPC to BPC (2/3) 

 
 
 
 
 
 
 

 
 
 

Set 𝑘𝐼 = 𝑘 + 𝑡  
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BRPC to BPC (3/3) 

 
 
 
 
 
 
 

 
 
 

Set 𝑘𝐼 = 𝑘 + 𝑡  
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Second Step: Equality Gadgets 

• If 𝑥𝑖ℓ is chosen, then forced to choose all 𝑥𝑖ℓ’s. 
• Otherwise all 𝑦𝑖ℓ’s must be picked. 
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Wrap Up 

 
 

• Lower bound for 𝑑-BRPC. 
 

• By reduction, get lower bounds for others. 
– Linear parameter transformation. 
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Super-Quasi-Polynomial Kernel 
• Adapt Fortnow-Santhanam-Dell-van Melkebeek 

argument to quasi-polynomial case. 
 

• Implication: quasi-polynomial kernel implies collapse of 
exponential time hierarchy. 
– Use an analog of Yap’s theorem in exponential hierarchy. 

 
• Observation: previous super-polynomial lower bounds. 

– Via Composition 
– Via Polynomial parametric transformation. 

26 



Open Problems 
 

• Close the gap between upper and lower bound? 
– We have seen some of them some time before. 

 
• Lower bounds for more problems? 

– Got bounds for matching problems. 
 

• Exclude subexponential kernels? 
– All known techniques seem to cease to work. 

 
• … 
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Conclusion 

 
• A formulation of weak composition  

– for proving polynomial lower bounds for kernelization. 

 
• Polynomial kernelization lower bounds  

– for some natural parameterized problems. 
 

• Super-quasi-polynomial kernel lower bounds 
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Thanks ! 

(And if you really want to know more about history…) 
29 



 
 
 
 

Backup Slides 
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Compressibility of 𝐍𝐍 instances 
• [Harnik, Naor, FOCS ‘06, SICOMP ‘10] 

– Let 𝐿 be a language in NP,  
– 𝑛 ∶= instance size, 𝑘 ∶= witness size. 

 
– A errorless compression is an algorithm 𝑨 with 

language 𝐿𝐼 and a polynomial 𝑝(. , . ): 
• Size of 𝑨(𝑥) is at most 𝑝(𝑘, log 𝑛). 
• 𝑨(𝑥) in 𝐿𝐼 iff 𝑥 in 𝐿. 
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Compressing OR(L) 

• 𝑂𝑂(𝐿) 
– 𝐿 in NP. 
– Input: instances 𝑥1, … , 𝑥𝑡 each of length 𝑛. 
– Membership: (𝑥1, … , 𝑥𝑡) in 𝑂𝑂(𝐿) if there exists 
𝑖 in [𝑡] such that 𝑥𝑖 in 𝐿. 
 

• Observation: the witness size is 𝑛, the size of 
the instance sequence is dominated by 𝑡. 
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• 𝑂𝑂(𝐿) 
– 𝐿 in NP. 
– Input: instances 𝑥1, … , 𝑥𝑡 each of length 𝑛. 
– Membership: (𝑥1, … , 𝑥𝑡) in 𝑂𝑂(𝐿) if there exists 
𝑖 in [𝑚] such that 𝑥𝑖 in 𝐿. 
 

• Observation: the witness size is 𝑛, the size of 
the instance sequence is dominated by 𝑡. 

Question 1 
 

Does OR(SAT) has a compression algorithm? 
 

(wait…. why is this interesting at all?) 

Compressing OR(L) 
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On the Positive Side… 

 
 

Theorem [Harnik, Naor, FOCS ‘06] 
 
If errorless compression for 𝑂𝑂(𝑆𝑆𝑇) exists, then can 
construct a family of collision-resistant hash functions 
(CRH) on any one-way function (OWF). 

• No known construction of CRH from general OWF. 
 

• Impossible with OWP using black-box reductions. 
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On the Negative Side… 
 

The incompressibility of 𝑂𝑂(𝑆𝑆𝑇) allows 
Investigation of incompressibility of  

other interesting problems. 
(Not necessarily 𝑂𝑂(𝐿) !) 

Question 2 
How? Coming soon… 
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Compressing 𝑂𝑂(𝑆𝑆𝑇) is unlikely 
• Distillation for 𝑂𝑂(𝑆𝑆𝑇):  

– For some fixed polynomial 𝑝(⋅); 
– Input: 𝜙1, … ,𝜙𝑡, each of length 𝑛. 𝑡 =  poly(𝑛) 
– Output: 𝜙 ∈ SAT ⟺𝜙𝑖  ∈ SAT  for some 𝑖. 
– Constraints: 

• Runs in time polynomial in length of input sequence. 
• 𝜙 = 𝑝 𝑛 ; independent of 𝑡. 

 
• Distillation is just a special case of compression 
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Compressing 𝑂𝑂(𝑆𝑆𝑇) is unlikely 
• Distillation for 𝑂𝑂(𝑆𝑆𝑇):  

– For some fixed polynomial 𝑝(⋅); 
– Input: 𝜙1, … ,𝜙𝑡, each of length 𝑚. t = poly(m) 
– Output: 𝜙 ∈ SAT ⟺𝜙𝑖   for some 𝑖. 
– Constraints: 

• Runs in time polynomial in length of input sequence. 
• 𝜙 = 𝑝 𝑚 ; independent of 𝑡. 

 
• Distillation is just a special case of compression 

 

Theorem [Fortnow et al, STOC ‘08] 
 
If there is distillation algorithm for 𝑂𝑂(𝑆𝑆𝑇), then 
coNP ⊆  NP/poly: polynomial hierarchy collapses. 
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Connect to  
Parameterized Complexity 

• In the compression of size 𝑝(𝑘, log 𝑛), if dropping 
the dependence on log 𝑛. Then, 
 

• The question is equivalent to find a kernel of size 
𝑝(𝑘) in parameterized complexity. 
– Where the parameter is the witness size. 

 
• Now turn into parameterized complexity.  
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