Weak Composition and Polynomial Lower Bounds for Kernelization

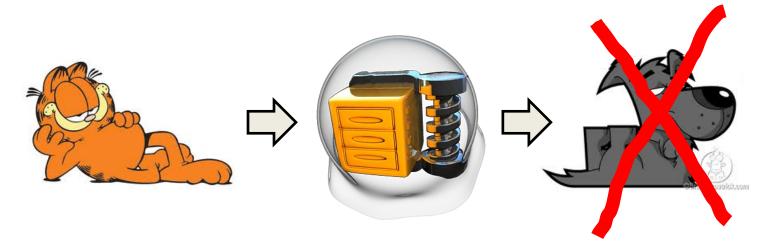
<u>Xi Wu</u>

University of Wisconsin-Madison, US

Joint work with <u>Danny Hermelin</u> Max Planck Institute for Informatics, Saarbrücken, Germany • From *Merriam-Webster*.

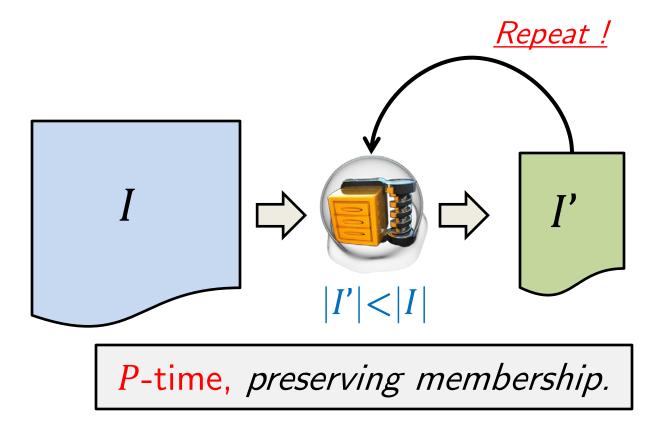
compression: *noun* |*kəm-'pre-shən*|

conversion of data in order to <u>reduce</u> the <u>space</u> occupied or <u>bandwidth</u> required. • One point should be added: *keep some properties*.

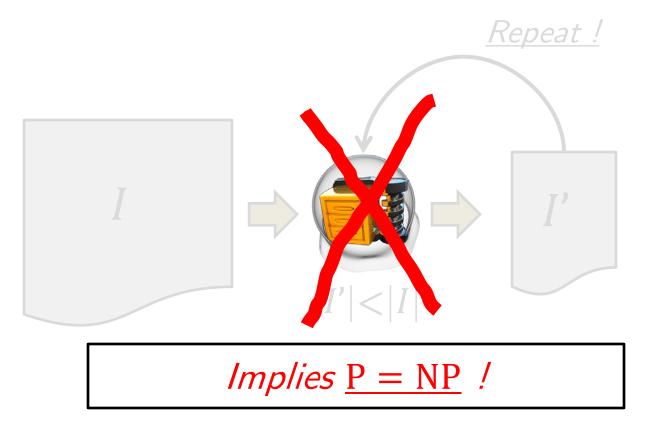


Let us examine *"compression"* in *theoretical computer science*.

Compressing NP-hard problem?



Compressing NP-hard problem?



Kernelization: Compression in Parameterized Complexity

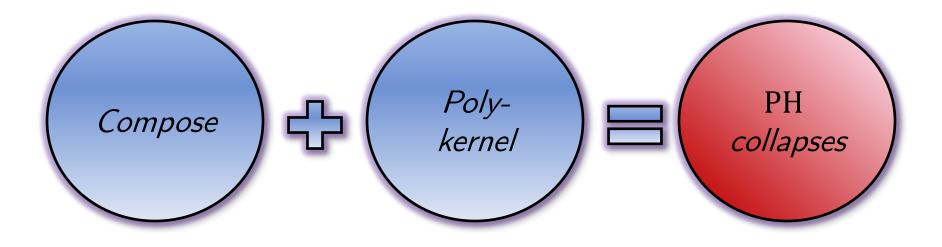
- *Kernelization* for *L* is an algorithm:
 - -Input: (*x*, *k*),
 - Output: (x', k') persereving membership and
 - $|x'| \leq f(k)$ for some function f.
 - k' is bounded by a function of k.
- Many nice upper bounds.
- What about lower bounds?

Machinery for *super-poly* kernel lower bound

- <u>Composition</u>: an important notion.
 - <u>Input</u>: (x_1, k), ..., (x_t, k)
 - -<u>Output</u>: (y, k')
 - <u>Constraints</u>:
 - Polynomial time computable
 - $y \in L \iff x_i \in L$ for some i
 - $k' \leq \operatorname{poly}(k)$

Theorem [BDFH '08, FS '08]

Assume \tilde{L} is **NP**-hard. If *L* composes and has polynomial kernel then PH collapses.



Polynomial Kernel Lower Bound

- <u>Question</u>: *Polynomial kernel lower bound*?
- [DvM '10] gives some answers:
 - Vertex-Cover has *no* size- $O(k^{2-\varepsilon})$ kernel for any $\varepsilon > 0$.
 - Same for Π -Vertex Deletion.
 - Through *sparsification lower bound*.
- Still, *kernel lower bounds for many* natural problems with *poly kernel* remain open.

Our Contribution

- $\Omega(k^{d-3-\epsilon})$ kernel lower bound for:
 - *d*-Set Packing, *d*-Set Covering, *d*-Hitting Set with Bounded Occurrences (through d-BRPC).
- $\Omega(k^{d-4-\epsilon})$ kernel lower bound for:
 - d-Clique Packing.
- Extend all known *super-polynomial kernel* lower bounds to *super-quasi-polynomial*.
 - Assume that *exponential time hierarchy* does not collapse.

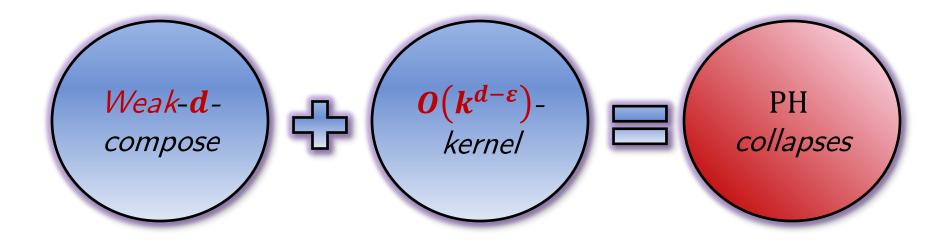
Weak Composition

- Weak *d*-composition from L_1 to L_2 .
 - <u>Input</u>: $(x_1, k), ..., (x_t, k)$ of L_1 .
 - <u>Output</u>: (y, k') of L_2 .
 - <u>Constraints</u>:
 - Polynomial time computable.
 - $y \in L_2 \iff x_i \in L_1$ for some *i*.
 - $k' \leq t^{1/d} p(k)$ for some fixed polynomial $p(\cdot)$.

Weak Composition

Theorem Assume $\widetilde{L_1}$ is NP-hard. If there exists a weak *d*composition from L_1 to L_2 , and L_2 has a *kernel of size* $O(k^{d-\varepsilon})$ for some $\varepsilon > 0$, then PH collapses.

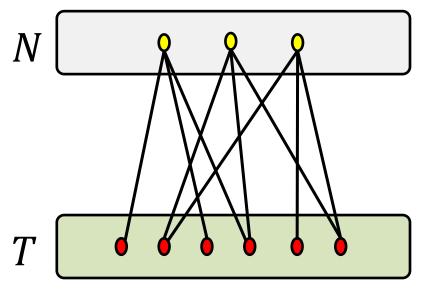
Weak Composition



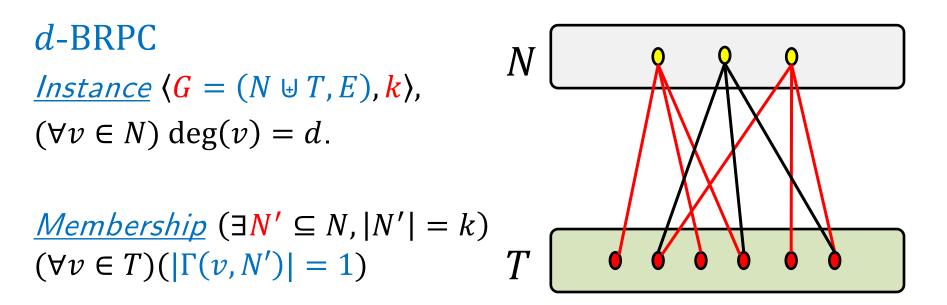
Main Problem for Lower Bounds

d-BRPC $\underline{Instance} \langle G = (N \sqcup T, E), k \rangle,$ $(\forall v \in N) \deg(v) = d.$

 $\frac{Membership}{(\forall v \in T)(|\Gamma(v, N')| = 1)}$



Main Problem for Lower Bounds



Trivial kernel: removing duplicated non-terminals gives a kernel of size $\binom{kd}{d} = O(k^d)$.

Main Lower Bound Result

(Our result) Unless **PH** collapses, *d*-BRPC has no kernel of size $O(k^{d-3-\varepsilon})$, for any $\varepsilon > 0$. Proof of the main result

Weak Composition for *d*-BRPC

- <u>Basic idea</u>: colors and IDs [DLS, ICALP '09]
- Source problem:
 - *col*-3-BRPC
 - <u>Instance</u>: BRPC instance, with a color mapping $col: N \rightarrow \{1, ..., k\}$.
 - <u>Question</u>: same question and additionally, N' consists of vertices of <u>different</u> colors?
- Target problem: (d + 3)-BRPC.
- Compose $\Theta(t^d)$ source instances to target.

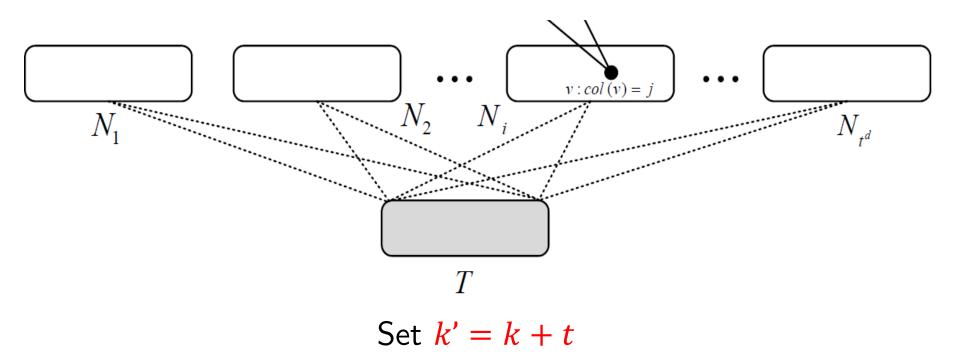
Composition: General Setup

- Given input sequence $(G_1, col_1, k), \dots, (G_n, col_n, k)$
 - Assign ID_i to instance N_i , $ID_i \subseteq \{1, \dots (t+d)\}, |ID_i| = d$

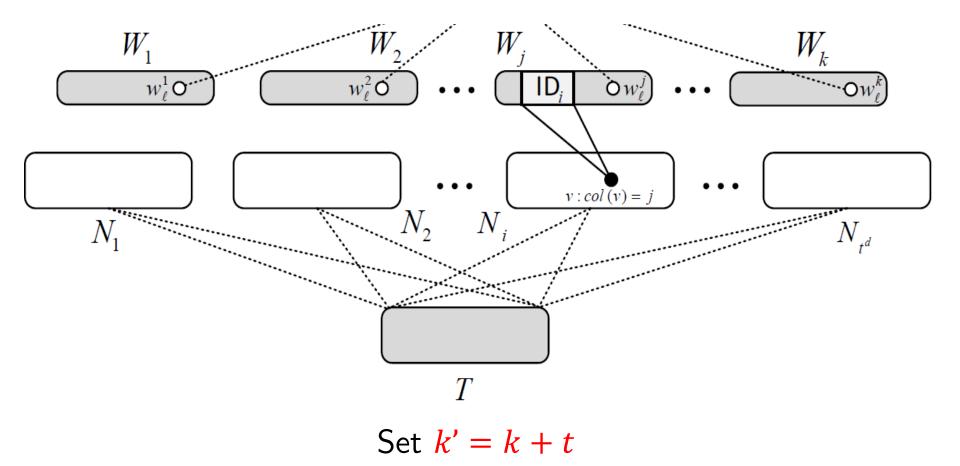
- Observe
$$\binom{t+d}{d} = \Theta(t^d)$$

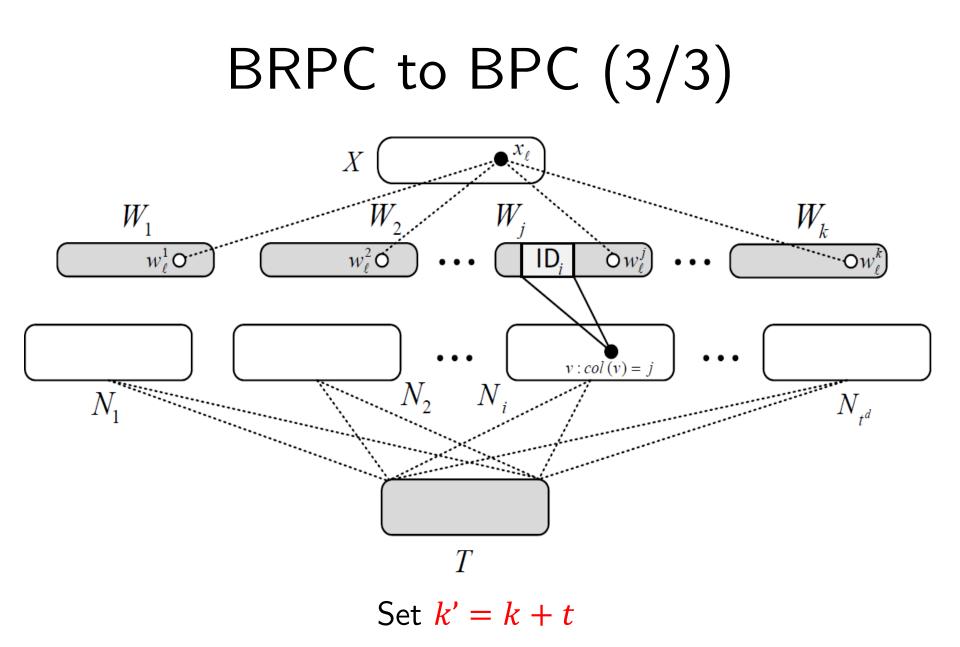
- Overview of composition
 - *First step*: compose to BPC (some vertices have unbounded degree).
 - Second step: construct equality gadget to get regular degree instance.

BRPC to BPC (1/3)

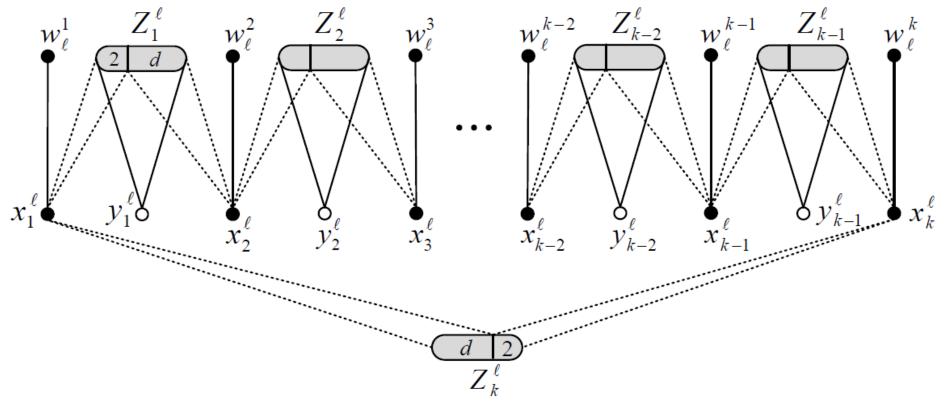


BRPC to BPC (2/3)





Second Step: Equality Gadgets



- If x_i^{ℓ} is chosen, then forced to choose all x_i^{ℓ} 's.
- Otherwise all y_i^{ℓ} 's must be picked.

Wrap Up

- *Lower bound* for *d*-BRPC.
- By *reduction*, get lower bounds for others.
 Linear parameter transformation.

Super-Quasi-Polynomial Kernel

- Adapt Fortnow-Santhanam-Dell-van Melkebeek argument to *quasi-polynomial* case.
- Implication: quasi-polynomial kernel implies collapse of exponential time hierarchy.
 - Use an analog of Yap's theorem in exponential hierarchy.
- *Observation*: previous super-polynomial lower bounds.
 - Via Composition
 - Via Polynomial parametric transformation.

Open Problems

- Close the *gap* between upper and lower bound?
 We have seen some of them some time before.
- Lower bounds for *more* problems?
 Got bounds for *matching* problems.
- Exclude *subexponential kernels*?
 All known techniques seem to cease to work.

Conclusion

- A formulation of weak composition

 for proving *polynomial lower bounds* for kernelization.
- Polynomial kernelization lower bounds

 for some natural parameterized problems.
- Super-quasi-polynomial kernel lower bounds

Thanks !

(And if you really want to know more about history...)

Backup Slides

Compressibility of NP instances

- [Harnik, Naor, FOCS '06, SICOMP '10]
 - Let L be a language in NP,
 - -n := instance size, k := witness size.
 - A <u>errorless compression</u> is an algorithm **A** with language L' and a polynomial p(.,.):
 - Size of A(x) is at most $p(k, \log n)$.
 - A(x) in L' iff x in L.

Compressing OR(L)

- OR(L)
 - -L in **NP**.
 - <u>Input</u>: instances x_1, \ldots, x_t each of length n.
 - <u>Membership</u>: $(x_1, ..., x_t)$ in OR(L) if there exists *i* in [t] such that x_i in L.
- Observation: the witness size is n, the size of the instance sequence is dominated by t.

Compressing OR(L)

Question 1

Does *OR(SAT)* has a *compression algorithm*?

(wait.... why is this interesting at all?)

the instance sequence is dominated by t.

On the *Positive* Side...

Theorem [Harnik, Naor, FOCS '06]

If *errorless compression* for *OR*(*SAT*) exists, then can construct a family of *collision-resistant hash functions* (CRH) on *any one-way function* (OWF).

- No known construction of CRH from general OWF.
- Impossible with OWP using *black-box reductions*.

On the Negative Side ...

The incompressibility of OR(SAT) allows
Investigation of incompressibility of
 other interesting problems.
 (Not necessarily OR(L) !)

Question 2

How? Coming soon...

Compressing OR(SAT) is unlikely

- <u>*Distillation*</u> for OR(SAT):
 - For some fixed polynomial $p(\cdot)$;
 - <u>Input</u>: ϕ_1, \dots, ϕ_t , each of length n. t = poly(n)
 - <u>Output</u>: ϕ ∈ SAT $\Leftrightarrow \phi_i$ ∈ SAT for some *i*.
 - <u>Constraints</u>:
 - Runs in time polynomial in length of input sequence.
 - $|\phi| = p(n)$; independent of *t*.
- Distillation is just a *special case* of compression

Compressing OR(SAT) is unlikely

• *<u>Distillation</u>* for *OR(SAT*):

- For some fixed polynomial $n(\cdot)$.

Theorem [Fortnow et al, STOC '08]

If there is *distillation algorithm* for OR(SAT), then **coNP** \subseteq **NP/poly**: polynomial hierarchy collapses.

• Distillation is just a *special case* of compression

Connect to Parameterized Complexity

- In the compression of size p(k, log n), if dropping the dependence on log n. Then,
- The question is equivalent to find a kernel of size p(k) in parameterized complexity.

- Where the parameter is the witness size.

• Now turn into *parameterized complexity*.