Bolt-on Differential Privacy for Scalable Stochastic Gradient Descent-based Analytics

Xi Wu
wuxi@google.com

Joint work with Fengan Li, Arun Kumar, Kamalika Chaudhuri, Somesh Jha and Jeffrey Naughton

May 15, 2017
Theme of the Talk

• **Better** differentially private Stochastic Gradient Descent (SGD).
 • SGD is a **popular optimization algorithm** for machine learning.
 • Differential privacy is the **de facto standard** in formalizing privacy.

• **Improve** private SGD on the following aspects **simultaneously**:
 • Easier to **implement**: “Bolt on” with an existing implementation.
 • Run **faster**,
 • Better **convergence/accuracy** and
 • Support a stronger **privacy model**.

• **Essence behind the “all-win” improvements**: A novel analysis of the L_2-sensitivity of SGD.
Background: Differential Privacy

- [Dwork, McSherry, Nissim and Smith, TCC 2006]
 - A formal notion on how to anonymize participation.
 - Gödel Prize 2017.

- **Intuition** for differential privacy:
 - Participation is anonymized if it causes little change to the output.

- Has become the **de-facto standard** of protecting data privacy.
 - Differential privacy will be in your pocket (iOS 10)!
 - Google’s RAPPOR.
\(\varepsilon\)-differentially privacy

- A **stability** property of a randomized algorithm \(\mathcal{M}\).
- For any neighboring \(S \sim S'\), and any event \(E\),

\[
S' = \{z_1, \ldots, z_{i-1}, z'_i, z_{i+1}, \ldots, z_m\} \\
S = \{z_1, \ldots, z_{i-1}, z_i, z_{i+1}, \ldots, z_m\} \\
\Pr[\mathcal{M}(S) \in E] \leq e^\varepsilon \cdot \Pr[\mathcal{M}(S') \in E]
\]

\((\varepsilon, \delta)\)-differential privacy: A relaxation.

- \(\Pr[\mathcal{M}(S) \in E] \leq e^\varepsilon \Pr[\mathcal{M}(S') \in E] + \delta\)
- **Qualitatively weaker** privacy model.
• ε is a ratio bound that measures the strength of privacy.
 - Smaller ε, stronger privacy.

• We inject random noise to ensure privacy.
 - Typically: Smaller $\varepsilon \leftrightarrow$ More noise \leftrightarrow Less accurate statistics.

• The “game” of finding better differentially private algorithms:
 - For the same ε we want less noise and better accuracy.
 - The key challenge: How to inject noise?
• Setup:
 - $Z = X \times Y$: a sample space.
 - Let $S = \{(x_i, y_i) : i \in [m]\}$, a training set.
 - $\mathcal{W} \subseteq \mathbb{R}^d$, a hypothesis space.
 - $\ell : \mathcal{W} \times Z \mapsto \mathbb{R}$, a loss function.

• Empirical Risk Minimization (ERM): Find $w \in \mathcal{W}$ that minimizes:
 $$\frac{1}{m} \sum_{i=1}^{m} \ell(w, (x_i, y_i))$$

m: training set size.
• A **fundamental** algorithm for ERM,

• **An iterative** procedure: At iteration t, sample $i_t \sim [m]$, and

\[w_{t+1} = w_t - \eta_t \nabla \ell_i (w_t). \]

• **Problem Statement**: How to inject noise for SGD to get both *private* and *accurate models*?
 - Focus on **convex** optimization (ℓ_i is convex).
 - Some remarks on **non-convex** optimization in the backup slides.
A Remark: Why Differentially Private SGD?

- SGD is **fundamental** for training machine learning models.
 - In particular on **large scale** datasets.
 - Private SGD implies **automatic** privacy for all these models.

- More **robust** privacy guarantees
 - Many previous work on **private ERM** requires assumptions in finding the **exact minimizer**, which is too idealistic.
 - Making SGD private **avoids any such assumption**.
Previous Private SGD

A common paradigm: Inject noise at each iteration.
- Each step locally private, global privacy follows from composition.
Previous Private SGD

A common paradigm: Inject noise at each iteration.
 - Each step locally private, global privacy follows from composition.

[+] Pros, [-]: Cons.
 - [Song, Chaudhuri and Sarwate (GlobalSIP 2013)]
 - [-] A lot of noise for each iteration, very “inaccurate” model.
 - [Bassily, Smith and Thakurta (STOC 2014)]
 - [+] Reduces noise for each iteration, and improves composition.
 - [-] The composition only works for (ε, δ)-differential privacy.
 - [-] (Their proof) needs $\Theta(m^2)$ iterations to converge.

• Both approaches
 - [-] Relatively hard to implement.
 - [-] Large runtime overhead.
Our Proposal

• Use the classic “output perturbation” method.
 • Inject noise only at the end to the result of non-private SGD.

• Analyze “global stability” of SGD:

\[L_2\text{-sensitivity} : \Delta_2 = \max_{S,S',r,r'} \left\| SGD(r, S) - SGD(r', S') \right\|_2 \]

[Challenge] Upper bound \(\Delta_2 \) by a small quantity.
Our Proposal

• Use the classic “output perturbation” method.
 • Inject noise only at the end to the result of non-private SGD.

• Analyze “global stability” of SGD:

 \[
 L_2\text{-sensitivity} : \Delta_2 = \max_{S,S',r,r'} \| \text{SGD}(r, S) - \text{SGD}(r', S') \|_2
 \]

 [Challenge] \textit{Upper bound }\Delta_2\textit{ by a small quantity.}

• [Our Contribution] \textit{Address the challenge by a novel analysis of }\Delta_2\textit{.}
Our Proposal

- Use the classic “output perturbation” method.
 - Inject noise only at the end to the result of non-private SGD.

- Analyze “global stability” of SGD:

 \[L_2\text{-sensitivity} : \Delta_2 = \max_{S, S', r, r'} \|SGD(r, S) - SGD(r', S')\|_2 \]

 [Challenge] Upper bound \(\Delta_2 \) by a small quantity.

- [Our Contribution] Address the challenge by a novel analysis of \(\Delta_2 \).

- Automatic benefits
 - [+] Easier to implement: “Bolt on” with an existing implementation.
 - [+] Low runtime overhead.
Our Algorithms: The New Part is How to Set Δ_2

Algorithm 1 Private Convex Permutation-based SGD

Require: $\ell(\cdot, z)$ is convex for every z, $\eta \leq 2/\beta$.
Input: Data S, parameters k, η, ε

1: function PrivateConvexPSGD$(S, k, \varepsilon, \eta)$
2: $w \leftarrow$ PSGD(S) with k passes and $\eta_t = \eta$
3: $\Delta_2 \leftarrow 2kL\eta$
4: Sample noise vector κ according to (3).
5: return $w + \kappa$
Our Algorithms: The New Part is How to Set Δ_2

Algorithm 1 Private Convex Permutation-based SGD

Require: $\ell(\cdot, z)$ is convex for every z, $\eta \leq 2/\beta$.

Input: Data S, parameters k, η, ε

1: function PrivateConvexPSGD(S, k, ε, η)
2: \hspace{1em} $w \leftarrow$ PSGD(S) with k passes and $\eta_t = \eta$
3: \hspace{1em} $\Delta_2 \leftarrow 2kL\eta$
4: \hspace{1em} Sample noise vector κ according to (3).
5: \hspace{1em} return $w + \kappa$

Algorithm 2 Private Strongly Convex Permutation-based SGD

Require: $\ell(\cdot, z)$ is γ-strongly convex for every z

Input: Data S, parameters k, ε

1: function PrivateStronglyConvexPSGD(S, k, ε)
2: \hspace{1em} $w \leftarrow$ PSGD(S) with k passes and $\eta_t = \min(\frac{1}{\beta}, \frac{1}{\gamma t})$
3: \hspace{1em} $\Delta_2 \leftarrow \frac{2L}{\gamma m}$
4: \hspace{1em} Sample noise vector κ according to (3).
5: \hspace{1em} return $w + \kappa$
Theoretical Guarantees of Our Algorithms

With output perturbation...

Theorem (Informal)

There is a private SGD algorithm based on output perturbation that gives both \(\varepsilon\)-differential privacy and convergence, even for 1 epoch over the data.

Intuition: Convergence with stronger privacy model (\(\varepsilon\)-DP).
Theoretical Guarantees of Our Algorithms

With output perturbation...

Theorem (Informal)

There is a private SGD algorithm based on output perturbation that gives both \(\varepsilon \)-differential privacy and convergence, even for 1 epoch over the data.

Intuition: Convergence with stronger privacy model (\(\varepsilon \)-DP).

Theorem (Informal)

For \((\varepsilon, \delta) \)-differential privacy and constant epochs, there is a private SGD algorithm based on output perturbation that gives \((\log m)^O(1) \)-factor improvement in excess empirical risk over BST14.

Intuition: Better convergence for \(O(1) \) passes and \((\varepsilon, \delta) \)-DP.
Empirical Study

• **Datasets**: MNIST (for this talk).
 • Recognize digits in images.
 • More datasets in the paper: KDDCup-2004 Protein, Forest Covertype.

• **Model**: Build logistic regression models (using SGD).

• **Key Experimental Results**:
 • Much faster running time.
 • Substantially better model accuracy.
Implementation

- Implemented using Bismarck
 - An in-RDBMS analytics system.
 - [Feng, Kumar, Recht and Re (SIGMOD 2012)].
 - Using Permutation-based SGD to unify in-RDBMS analytics.

- Integration effort.
 - Our algorithms: Trivial to integrate.
 - SCS13, BST14: Needs to re-implement sampling functions inside Bismarck core.
Experimental Results: Running Time

Much faster when CPU cost dominates the runtime:

- Negligible overhead compared to the noiseless version.

![Graph showing running time comparison](image)

- **Noiseless**
- **Ours**
- **SCS13**
- **BST14**
Experimental Results: ε-Differential Privacy

More accurate for the same privacy guarantee (ε):

Figure: Convex case. Mini-batch size is 50, 10 epochs
Experimental Results: (ε, δ)-Differential Privacy

Up to 4X better test accuracy:

Figure: Convex case. $\delta = 1/m^2$. Mini-batch size is 50, 10 epochs
Very Roughly: How the Theory Works

• Sharpen and combine two recent theory advancements:
 • Stability of SGD in expectation: [Hardt, Recht and Singer, ICML 2016].
 • Convergence of Permutation-based SGD (PSGD): [Shamir, NIPS 2016].
Very Roughly: How the Theory Works

• Sharpen and combine two recent theory advancements:
 • Stability of SGD in expectation: [Hardt, Recht and Singer, ICML 2016].
 • Convergence of Permutation-based SGD (PSGD): [Shamir, NIPS 2016].

• Part 1: From “stability in expectation” to ε-differential privacy.
 • Have to use PSGD.
 • Key: If the randomness does not depend on S, then it suffices to bound

$$\max_{S, S', r} \| SGD(r, S) - SGD(r, S') \|.$$

• Differential privacy is really a notion of worst-case stability.
• Sharpen and combine **two recent theory advancements:**
 • **Stability of SGD in expectation:** [Hardt, Recht and Singer, ICML 2016].
 • **Convergence of Permutation-based SGD (PSGD):** [Shamir, NIPS 2016].

• **Part 1:** From “stability in expectation” to ε-differential privacy.
 • Have to use PSGD.
 • **Key:** If the randomness does not depend on S, then it suffices to bound
 \[
 \max_{S, S', r} \| \text{SGD}(r, S) - \text{SGD}(r, S') \|.
 \]
 • Differential privacy is really a notion of worst-case stability.

• **Part 2:** Convergence of **private** PSGD.
 • Convergence of PSGD is **poorly understood in theory**.
 • We mitigate this issue using Shamir’s results.
Important Details that We Do Not Cover

• Please refer to the paper for the following important details:
 • Proofs.
 • How batch sizes improve accuracy under the same privacy guarantee.
 • How to set hyperparameters.
 • How to do private parameter tuning.
 • Reduce dimensionality via random projection.
 • More lessons we learned (e.g. Our algorithms are easier to tune).
 • More implementation details (differential privacy can be very subtle).
 • More experimental results.
 • ...
Summary and Future Directions

- Better differentially private stochastic gradient descent
 - Bolt-on implementation, more efficient, produces more accurate models and supports a stronger privacy model.

- Many interesting things to do:
 - Better understanding of convergence of constant-epoch private SGD.
 - Principled ways to set batch size for private SGD?
 - Systematic comparison of different approaches to private ERM.
 - How does our work fit into the larger context of implementing a differential privacy system?
 - ...
Backup Slides
Better Analysis of L_2-Sensitivity of SGD

- Denote A the non-private SGD algorithm.
 - $A(r, S)$: r the randomness part, S the input training set.
 - R: random variable where r is sampled from.

- **Step 1**: Reduce to the “same randomness” case.
 - In general, we need to bound
 \[
 \max_{S, S', r, r'} \| A(r, S) - A(r', S') \|.
 \]
 - **Key**: If the random variable R does not depend on S, then we can bound
 \[
 \max_{S, S', r} \| A(r, S) - A(r, S') \|.
 \]
“Same Randomness”
⇒ “Almost Identical Gradient Updates”

- **Step 2**: Analyze the “same randomness” case:
 - **Permutation-based SGD (PSGD)**: We sample a random permutation r of $[m]$, and cycle through S according to r.

\[w_0 \xrightarrow{G_1} w_1 \xrightarrow{G_2} \cdots \xrightarrow{G_T} w_T \]

- Key: Due to "same randomness," in each pass we only encounter once the differing gradient update function $G_t \neq G'_t$.

Xi Wu
Bolt-on Differential Privacy for SGD
• **Step 2**: Analyze the “same randomness” case:
 • **Permutation-based SGD (PSGD)**: We sample a random permutation \(r \) of \([m]\), and cycle through \(S \) according to \(r \).
 • We have the following diagram (\(G_i \) are functions)

\[
S : w_0 \xrightarrow{G_1} w_1 \xrightarrow{G_2} \cdots \xrightarrow{G_t} w_t \xrightarrow{G_{t+1}} \cdots \xrightarrow{G_T} w_T
\]

\[
\uparrow
\]

\[
\delta_t = \| w_t - w'_t \|
\]

\[
\downarrow
\]

\[
S' : w'_0 \xrightarrow{G'_1} w'_1 \xrightarrow{G'_2} \cdots \xrightarrow{G'_t} w'_t \xrightarrow{G'_{t+1}} \cdots \xrightarrow{G'_T} w'_T
\]
“Same Randomness”
⇒ “Almost Identical Gradient Updates”

• **Step 2**: Analyze the “same randomness” case:
 - **Permutation-based SGD (PSGD)**: We sample a random permutation \(r \) of \([m]\), and cycle through \(S \) according to \(r \).
 - We have the following diagram (\(G_i \) are functions)
 \[
 S : w_0 \xrightarrow{G_1} w_1 \xrightarrow{G_2} \ldots \xrightarrow{G_t} w_t \xrightarrow{G_{t+1}} \ldots \xrightarrow{G_T} w_T
 \]
 \[
 \delta_t = \|w_t - w'_t\|
 \]
 \[
 S' : w'_0 \xrightarrow{G'_1} w'_1 \xrightarrow{G'_2} \ldots \xrightarrow{G'_t} w'_t \xrightarrow{G'_{t+1}} \ldots \xrightarrow{G'_T} w'_T
 \]
 - **Key**: Due to “same randomness,” in each pass we only encounter once the differing gradient update function \(G_t^* \neq G'_t^* \).
Expansion Properties of Gradient Operators

[Key Quantity] \(\delta_t = \| w_t - w'_t \| \)

Definition (Expansiveness)
An operator \(G : \mathcal{W} \to \mathcal{W} \) is \(\rho \)-expansive if \(\sup_{w, w'} \frac{\| G(w) - G(w') \|}{\| w - w' \|} \leq \rho \).

Intuition: Measure how \(\delta_t \) gets stretched/contracted.
Expansion Properties of Gradient Operators

[Key Quantity] \(\delta_t = \| w_t - w'_t \| \)

Definition (Expansiveness)
An operator \(G : \mathcal{W} \mapsto \mathcal{W} \) is \(\rho \)-expansive if \(\sup_{w, w'} \frac{\| G(w) - G(w') \|}{\| w - w' \|} \leq \rho \).

Intuition: Measure how \(\delta_t \) gets stretched/contracted.

Lemma (Nesterov, Polyak)
Assume that \(\ell \) is \(\beta \)-smooth. Then, the following hold.

1. If \(\ell \) is convex, then for any \(\eta \leq 2/\beta \), \(G_{\ell, \eta} \) is \(1 \)-expansive.

2. If \(\ell \) is \(\gamma \)-strongly convex, then for \(\eta \leq \frac{2}{\beta + \gamma} \), \(G_{\ell, \eta} \) is \(1 - \frac{2\eta\beta\gamma}{\beta + \gamma} \)-expansive.

Intuition: \(\delta_t \) is either unchanged or is shrinking!
Expansion Properties of Gradient Operators

[Key Quantity] \(\delta_t = \| w_t - w'_t \| \)

Definition (Expansiveness)

An operator \(G : \mathcal{W} \mapsto \mathcal{W} \) is \(\rho \)-expansive if \(\sup_{w, w'} \frac{\| G(w) - G(w') \|}{\| w - w' \|} \leq \rho \).

Intuition: Measure how \(\delta_t \) gets stretched/contracted.

Lemma (Nesterov, Polyak)

Assume that \(\ell \) is \(\beta \)-smooth. Then, the following hold.

1. If \(\ell \) is convex, then for any \(\eta \leq 2/\beta \), \(G_{\ell, \eta} \) is \(1 \)-expansive.

2. If \(\ell \) is \(\gamma \)-strongly convex, then for \(\eta \leq \frac{2}{\beta + \gamma} \), \(G_{\ell, \eta} \) is \(1 - \frac{2\eta\beta\gamma}{\beta + \gamma} \)-expansive.

Intuition: \(\delta_t \) is either unchanged or is shrinking!
• **Step 3**: Using the expansion properties, and that most of the time we are contracting or unchanged (*thanks to “same randomness!”*),
• **Step 3**: Using the expansion properties, and that most of the time we are contracting or unchanged (thanks to “same randomness!”),

Theorem (Convex)

Consider k-passes PSGD for L-Lipschitz, convex and β-smooth optimization. Let $\eta_1 = \eta_2 = \cdots = \eta_T = \eta \leq \frac{2}{\beta}$. Then $\sup_{S \sim S'} \sup_r \delta_T \leq 2kL\eta$.

Intuition: $\delta_T = O(k\eta)$.
Our Results on Bounding δ_T

- **Step 3**: Using the expansion properties, and that most of the time we are contracting or unchanged (thanks to “same randomness!”),

Theorem (Convex)

Consider k-passes PSGD for L-Lipschitz, convex and β-smooth optimization. Let $\eta_1 = \eta_2 = \cdots = \eta_T = \eta \leq \frac{2}{\beta}$. Then $\sup_{S\sim S'} \sup_r \delta_T \leq 2kL\eta$.

Intuition: $\delta_T = O(k\eta)$.

Theorem (Strongly Convex)

Consider k-passes PSGD for L-Lipschitz, γ-strongly convex and β-smooth optimization. Let $\eta_t = \min\left(\frac{1}{\gamma_t}, \frac{1}{\beta}\right)$. Then $\sup_{S\sim S'} \sup_r \delta_T \leq \frac{2L}{\gamma m}$.

Intuition: $\delta_T = O\left(\frac{1}{m}\right)$.
• A recent paper [Zhang, Zheng, Mou and Wang, ArXiv 2017]

• Batch size m can lead to optimal excess empirical risk:
 • Note that this is nothing but Gradient Descent.
 • No need of Shamir’s results as no randomness in gradient steps.

• Non-convex Optimization:
 • Basically, by choosing a “random” starting point and then SGD, one can get (ε, δ)-differential privacy with convergence to a stationary point.