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Machine Learning Progress

« Significant progress in Machine Learning
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Key Engine Behind the Success @

« Training Deep Neural Networks: y = f(x; W)

« Given training data {(xx{, y1), (2, ¥2), -, (O, Yi)}
 Try to find W such that the network fits the data

Outdoor

Indoor

Outdoor




Key Engine Behind the Success

» Using Deep Neural Networks: y = f(x; W)
» Given a new test point x
* Predicty = f(x; W)

000066
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Challenges @

 Blackbox: not too much understanding/interpretation

Black Box

&

Original image Perturbations Adversarial example

Temple (97%) Ostrich (98%)



Interpretable Machine Learning ]

« Attribution task: Given a model and an input, compute an attribution
map measuring the importance of different input dimensions

Compute
Attribution




Integrated Gradient: Axiomatic Approach ({j

Overview
* List desirable criteria (axioms) for an attribution method

 Establish a uniqueness result: only this method satisfies these
desirable criteria

* Inspired by economics literature: Values of Non-Atomic Games.
Aumann and Shapley, 1974.

Axiomatic Attribution for Deep Networks.
Mukund Sundararajan, Ankur Taly, Qigi Yan. ICML 2017.



Integrated Gradient: Definition

|IG(input,base) = (input -baseline)*
I, VF(a*input + (1-0)*baseline) de




Integrated Gradient: Example Results

Original image Integrated gradients

Top label: stopwatch

Score: 0.998507

Original image Integrated gradients

Top label: jackfruit

Score: 0.99591

Original image

Top label: school bus

Score: 0.997033




Integrated Gradient: Axioms

* Implementation Invariance: Two networks that compute
identical functions for all inputs get identical attributions even if
their architecture/parameters differ

« Sensitivity:

* (a) If baseline and input have different scores, but differ in a
single variable, then that variable gets some attribution

* (b) If a variable has no influence on a function, then it gets no
attribution

 Linearity preservation: Attr(a*f1 + b*f2)=a*Attr(f1)+b*Attr(f2)
« Completeness: sum(Attr) = f(input) — f(baseline)

« Symmetry Preservation: Symmetric variables with identical
values get equal attributions



Attribution is Fragile )
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small
adversarial windflower

perturbation

Very
Different

Interpretation of Neural Networks is Fragile.
Amirata Ghorbani, Abubakar Abid, James Zou. AAAI 2019.



Robust Prediction Correlates with Robust Attribution: Why? @

* Training for robust prediction: find a model that predicts the
same label for all perturbed images around the training image

original image,
normally trained model

perturbed image,
normally trained model




Robust Prediction Correlates with Robust Attribution: Why? @

* Training for robust prediction: find a model that predicts the
same label for all perturbed images around the training image

original image,
robustly trained model

perturbed image,
robustly trained model




Robust Attribution Regularization )

* Training for robust attribution: find a model that can get similar
attributions for all perturbed images around the training image

ming E[l(x,y;60) + A * RAR]

RAR = max s(IG(x,x"))
x'eA(x)

Perturbed input Allowed perturbations




Robust Attribution Regularization

* Training for robust attribution: find a model that can get similar
attributions for all perturbed images around the training image

ming E[l(x,y;60) + A * RAR]

RAR = max s(IG(x,x"))
x'eA(x)

Integrated Gradient




Robust Attribution Regularization )

* Training for robust attribution: find a model that can get similar
attributions for all perturbed images around the training image

ming E[l(x,y;60) + A * RAR]

RAR = max s(G(x,x"))
x'€A(x)

 Two instantiations:

IG-NORM = max |[1G(x, x")|
x'eA(x) D

IG-SUM-NORM = max [[IG(x, x")||. + sum(IG(x, x"))
x'eA(x) L



Experiments: Qualitative @
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Experiments: Qualitative @
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Experiments: Qualitative @

Original lmﬁTU%’lmae Saliency Map

Fashion-MNIST dataset



Experiments: Qualitative @
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Experiments: Quantitative

* Metrics for attribution robustness
1. Kendall's tau rank order correlation
2. Top-K intersection

Original Image Attribution Map Perturbed Image Attribution Map

Top-1000 Intersection: 0.1%
Kendall's Correlation: 0.2607



Result on Flower dataset
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Result on MINST dataset

104 — Top-100 Intersection
- | = Kendall's Correlation
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Result on Fashion-MINST dataset
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Result on GTSRB dataset

- TOp-100 Intersection
- Kendall's Correlation

10 -

0.8 A

0.6 -

0.4 -

0.2 -

0.0

NATURAL IG-NORM IG-SUM-NORM



Prediction Accuracy of Different Models

o

MNIST

Fashion-MNIST

GTSRB

Flower

NATURAL
|G-NORM
|G-SUM-NORM
NATURAL
|G-NORM
|G-SUM-NORM
NATURAL
|G-NORM
|G-SUM-NORM
NATURAL
|G-NORM
|G-SUM-NORM

99.17%
98.74%
98.34%
90.86%
85.13%
85.44%
98.57%
97.02%
95.68%
86.76%
85.29%
82.35%



Connection to Robust Prediction

* RAR
ming E[l(x,y;60) + A * RAR]

RAR = max s(IG(x,x"))
x'€A(x)

«If A =1 and s(-) = sum(-), then RAR becomes the Adversarial
Training objective for robust prediction

man]E[ max l(x’,y;H)]

x' €N (x,€)

simply by the Completeness of IG

Towards Deep Learning Models Resistant to Adversarial Attacks.
Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Vladu. ICML 2017.



When the two coincide?

* Theorem: For the special case of one-layer neural networks
(linear function), the robust attribution instantiation (s(:) = |[|[|;)
and the robust prediction instantiation (s(-) = sum(+)) coincide,
and both reduce to soft max-margin training.



Connection to Robust Prediction ]

* RAR
ming E[l(x,y;60) + A * RAR]

RAR = max s(IG(x,x"))
x'€A(x)

 If 1 =1"/e? and s(-) = ||-|| with approximate IG, then RAR
becomes the Input Gradient Regularization for robust prediction

ming E[I(x, y; 6) + X[V, [(x, y; O)II¢]

Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients.
Andrew Slavin Ross and Finale Doshi-Velez. AAAI 2018.



Discussion

* Robust attribution leads to more human-aligned
attribution.

* Robust attribution may help tackle spurious
correlations.
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