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Abstract—confidentiality of training data induced by re-
leasing machine-learning models, and has recently received
increasing attention. Motivated by existing MI attacks
and other previous attacks that turn out to be MI “in
disguise,” this paper initiates a formal study of MI attacks
by presenting a game-based methodology. Our method-
ology uncovers a number of subtle issues, and devising
a rigorous game-based definition, analogous to those in
cryptography, is an interesting avenue for future work. We
describe methodologies for two types of attacks. The first
is for black-box attacks, which consider an adversary who
infers sensitive values with only oracle access to a model.
The second methodology targets the white-box scenario
where an adversary has some additional knowledge about
the structure of a model. For the restricted class of
Boolean models and black-box attacks, we characterize
model invertibility using the concept of influence from
Boolean analysis in the noiseless case, and connect model
invertibility with stable influence in the noisy case. In-
terestingly, we also discovered an intriguing phenomenon,
which we call “invertibility interference,” where a highly
invertible model quickly becomes highly non-invertible by
adding little noise. For the white-box case, we consider a
common phenomenon in machine-learning models where
the model is a sequential composition of several sub-
models. We show, quantitatively, that even very restricted
communication between layers could leak a significant
amount of information. Perhaps more importantly, our
study also unveils unexpected computational power of these
restricted communication channels, which, to the best of
our knowledge, were not previously known.

I. INTRODUCTION

Privacy concerns surrounding the release of statistical
information have received considerable attention in the
past decade. The goal of statistical data privacy research
is to enable accurate extraction of valuable data patterns,
while preserving an individual’s privacy in the under-
lying dataset against data privacy attacks. In general,
there have been two flavors of data privacy attacks
in the literature. The first is against a specific privacy
notion, such as differential privacy [1]. Investigations of
such attacks have led to lower bounds (e.g. [2], [3]).
The second kind of attack is against attribute privacy,

which is a general concept where one studies how much
distortion is needed in order to prevent an adversary from
inferring sensitive attributes from non-sensitive ones (for
concreteness, see for example reconstruction attacks [4],
[5]). In particular, attribute privacy attacks are widely
considered in the applied data privacy literature, where
scenarios such as the release of medical information are
in focus.

This paper focuses on a specific class of attacks
falling under the second type. The class of attacks
we consider relate to inferring sensitive attributes from
a released model (e.g. a machine-learning model), or
model inversion (MI) attacks. Several of these attacks
have appeared in the literature. Recently, Fredrikson et
al. [6] explored MI attacks in the context of personalized
medicine. Specifically, Fredrikson et al. [6] “invert” a
publicly-released linear regression model in order to
infer sensitive genetic markers, based on the model
output (Warfarin dosage) plus several other non-sensitive
attributes (e.g., height, age, weight). Interestingly, they
demonstrate that knowledge of the model output (War-
farin dosage here), or even a reasonable approximation of
it, leads to a statistically-significant increase in leakage
of the sensitive attribute. This leads to natural questions
of how widely such effective and efficient inversion
attacks exist for statistical models, as well as how to
quantify the additional leakage due to accessing the
model.

Recently, more instances of effective MI attacks have
been discovered, further stimulating interest in this class
of attack. For example, [7] considered a white-box
MI attack on models used to classify images. They
demonstrated that by exploiting the additional confidence
information provided by such models, one can signifi-
cantly improve both the effectiveness and efficiency of
an MI attack. Interestingly, we note that these attacks are
reminiscent of privacy attacks discussed in the context
of inverting highly compressed image features, which
were explored previously [8], [9], [10]. It is our belief,
however, that if we are to develop countermeasures



against all these attacks, or even a precise explanation
of the dangers they pose, we will need to go beyond
example-based definitions and require a methodology to
capture this phenomenon. We consider this paper to be
an initial step and much work remains to be done.

In this paper we take a first step toward providing a
formal treatment of MI attacks. Our contributions are
summarized as follows:
• We present two methodologies, which are both

inspired by the “two world” games common in
cryptographic definitions. A methodology for black-
box attacks, where the adversary has oracle access
to the model, and a methodology for white-box
attacks, where the adversary has information about
the model structure. Our methodologies provide a
“blue print” for making these definitions precise for
specific cases. Extending this to a precise general
definition (such as the real and the ideal world
definition used in the SMC literature) will be an
interesting direction to pursue. Our methodology
focuses on machine-learning (ML) models because
they have been the target of existing MI attacks.
One shortcoming of our methodology is that we do
not take into account the specific structure of the
ML model or the learning task. Again, connecting
our methodology to various notions in the ML
literature (such as stability) provides an attractive
avenue for future work.

• We then specialize our methodology to important
special cases, in order to isolate important factors
that affect model invertibility (i.e. how successfully
one can invert the model). Identifying these factors
is important for at least two applications. First, as
a decision procedure prior to publishing a model,
estimating invertibility can help one gauge the leak-
age of sensitive attributes, and thus help in deciding
which part of a model is publishable. The second
is to help in preventing MI attacks: if invertibility
is low, then little noise may be used to effectively
prevent MI attacks without sacrificing too much
utility.

• For the case of models that are Boolean functions
(e.g., decision trees with attributes having finite do-
mains), we have some concrete results. In this case,
we can leverage powerful tools from Boolean anal-
ysis. Specifically for black-box MI attacks where
the adversary knows the model output and precisely
all other features, and there is no noise, we show
that model invertibility is characterized by influence
from Boolean analysis. Unfortunately, it becomes
significantly more complicated if there is noise in
the prior knowledge of the adversary. Neverthe-

less, we show that the invertibility is related to
stable influence in Boolean analysis. Interestingly,
our exploration in the noisy situation also unveils
a phenomenon where a highly invertible model
quickly becomes highly non-invertible by adding a
little noise. We study such phenomenon under the
name “invertibility interference.”

• For white-box MI attacks, we study a common
phenomenon where the computation of a machine
learning model is a sequential composition of sev-
eral layers or models. Exploiting the intermediate
information communicated between these layers,
even when it is highly compressed, can give a
significant advantage to the adversary. In fact, the
white-box attack described in [7] exploits exactly
such information where the confidence informa-
tion is the likelihood probabilities computed at an
intermediate layer of the model. We thus study
how these restricted communication channels could
leak information. Interestingly, our results show,
quantitatively, that even with 1 bit of communi-
cation there could be a significant leakage. Our
results also unveil unexpected computational power
of these restricted channels, which, to the best of
our knowledge, were previously unknown.

The rest of the paper is organized as follows: Section II
describes our methodologies for black-box and white-
box MI attacks. Then in Section III we give some
technical background that is necessary for our develop-
ment later. Section IV and Section V, specializes our
general formulation to important special cases. Finally,
we conclude the paper in Section VI by discussing
connections of our formulation with other cryptographic
notions.

II. A METHODOLOGY FOR FORMALIZING MI
ATTACKS

An essential goal of studying MI attacks is to quan-
tify the strength of the correlation between sensitive
attributes and the output of the model. While this goal
is very intuitive, formalizing these attacks poses a chal-
lenge due to the diversity of such attacks. Moreover,
as we mentioned earlier, many different attacks can be
viewed as “MI attacks.” This suggests that it can be
difficult to give a “unified” definition of MI attacks
without risking over generalization (i.e., even a lot of
benign cases with “weak correlation” will be classified
as attacks). As a first attempt, our goal is thus to abstract
out important factors from existing attacks, and present
a methodology. Guided by these methodologies, later in
this paper we identify special cases of MI attacks that
lead to theoretical insights.
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This section is organized as follows: We start by
discussing concepts from machine learning, which pro-
vides the background for our methodology. Then we
discuss MI attacks in an intuitive manner. In Section II-A
and II-B we present methodologies for black-box MI and
white-box MI attacks, respectively. Along the way, we
discuss how our methodology captures existing attacks
and can be used to model other interesting scenarios that
have not been addressed before.

Background. We formalize MI attacks in the general-
ized learning setting. In the generalized learning set-
ting, a machine learning task is represented as a triple
(Z,H, `), where Z is a sample space, H is a hypothesis
space, and ` : H × Z 7→ R is a loss function. Given a
data generating distribution D , the goal of learning is to
solve the following stochastic optimization problem:

min
h∈H

E
x∼D

[`(h, z)].

In machine learning however, D is unknown and one
must find an approximate solution using a dataset S of
i.i.d. samples from D .

Recall that in the supervised learning setting, Z is of
the form X×Y where X is called a feature space and Y
an output space. Further, a hypothesis h ∈ H has to take
the form X 7→ Y . On the other hand, the generalized
learning setting, as formulated above, also incorporates
unsupervised learning. For example in clustering, one
maps z ∈ Z, a collection of points, to a set of clusters.

MI Attacks: Scenarios and Observations. Intuitively,
MI attacks are designed to capture privacy concerns
about participants in a training set, which arise from the
following scenario: An organization trains a model over
some dataset collected from a large set of individuals.
After restricted access (say under some strict access
control) to the model within the organization, now they
want to release the model to the public for general use
(e.g. say by a medical-clinic that specializes in providing
personalized medicine.) We envision two mechanisms
for releasing a model: release the model as a black box
so public can use it freely, or release the model as a
white box with some information about its architecture
and parameters published. The concern is that certain
correlation encoded in the model may be too strong
such that a potential adversary can leverage the pub-
licly published model, plus additional knowledge about
individuals in the training set, to recover participants’
sensitive information. The essential goal of studying MI
attacks is to quantify the strength of such correlations so
that one can have a better understanding to what degree
such concerns matter.

Towards this goal, one thus needs to formulate a
reasonable adversary model to capture how an adversary
may exploit the model. We have the following simple
observations: (1) We are interested in MI attacks in
the test phase of machine learning, where a model h
has already been trained. (2) It is necessary to have
some objective for an attack, which can be captured by
some function τ that maps a sample z ∈ Z to some
range. (3) The quantification is carried over the training
dataset, since the main concern is for participants in the
dataset. (4) The quantification is supposed to compare
“two worlds”, one where the adversary has access to
the model, and the other where the adversary does not.
This is to capture the fact that we want to quantify the
additional risk of releasing a model.

Limitations: Next we discuss some limitations of our
methodology, and addressing these limitations provides
interesting avenue for future work. Our methodology
focusses on one organization, so for example, our model
does not cover the following scenario: a different organi-
zation can collect data S? similar to S and build a model
h? (may be using the same learning algorithm), which
can then be used to infer sensitive information about
participants. Moreover, the results need to be interpreted
on a case-by-case basis. For example, assume that our
definition with parameterization for a specific context
yields advantage of 1

N , where N is the size of the
training set S. Should we consider this an attack? This
depends on the context. We admit that our methodology
does not exploit structure of the ML task and model
(e.g., perhaps looking at the loss function l). In general,
we believe that what is considered a privacy breach is
highly dependent on the context.

A. Black-Box MI

We now present a methodology for formalizing black-
box MI attacks where the adversary has oracle access to
a model. Along the way, we introduce notation that will
be used later.

Measuring Effectiveness of An Attack. It is attractive
to consider the success of an attack on a single sample
point. While this might be sensible in some specific sce-
narios (for example, the adversary wants to get genetic
information about a specific individual), it does not seem
to be a good formal measure. This is because a machine
learning model, in contrast to an encryption, is supposed
to communicate some information about the sample, so
in the worst case it is always possible to extract some
information about a specific individual.

On the other hand, one may attempt to measure an
attack over the data-generating distribution D , which is
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in the definition of a machine-learning task. However,
this leads to a complication as D is unknown in general
and so one has to impose assumptions on its structure.
We choose to measure an attack over the dataset used
to train the model. This thus provides a privacy loss
measure for participants in the dataset. Moreover, this
allows us to carry out the quantification without an
additional parameter D .

Adversaries and Their Power. We first note that a
model at the test phase is fixed, so there is no asymptotic
behavior since there is no infinite family of models.
We thus model an adversary as a probabilistic algo-
rithm without limiting its computational complexity. In
other words, the adversary is all powerful. We note
that other data privacy formulations, such as differen-
tial privacy [1], also make such an assumption on the
adversarial power.

We now present a methodology for formulating
black-box MI attacks with the goal of measuring the
effectiveness of these attacks. To use this methodology
as a template to generate precise definitions for specific
scenarios, one has to instantiate auxiliary information
generators gen and sgen in the methodology for
attacks and simulated attacks, respectively. Having
two different generators in the two worlds allows
us additional flexibility (e.g., in the Warfarin attack
the attacker in the MI-Attack world knows some
“approximation” of the Warfarin dosage.) Note that this
information cannot be computed by using the oracle
because the adversary does not know all the feature
values. In some cases, gen and sgen will be the same.

Methodology 1. The starting point of an MI attack is a
machine learning problem, specified as a triple (Z,H, `).
We use the following notations:

1) Γ: A training algorithm of the learning problem,
which outputs a hypothesis Γ(S) ∈ H on an input
training set S.

2) DS : A distribution over the training set S.
3) τ : The objective function computed by the adver-

sary. For now, one can view it simply as some
function that maps Z to {0, 1}∗.

4) gen, sgen: Auxiliary information generators. They
map a pair (S, z) to an advice string in {0, 1}∗.

As we noted before there are two worlds in our
methodology (the MI-attack world) and (the simulated
attack world).
The MI-attack world: This world is described by a
tuple (A, gen, τ, S,DS ,Γ), where the adversary (A) is
a probabilistic oracle machine (recall that gen generates

an advice string for the adversary from (S, z)). Now the
following game is played between the Nature and the
adversary A.
(1) Nature draws a sample z from DS .
(2) Nature presents ν = gen(S, z) to the adversary.
(3) Adversary outputs AΓ(S)(ν).
The gain of the game is evaluated as

gain(A, gen, τ, S,DS ,Γ) =

Pr[AΓ(S)(gen(S, z)) = τ(z)]

where the probability is taken over the randomness of
z ∼ DS , the randomness of gen, and the randomness
of A. In other words, the gain is the probability that
the adversary A with oracle access to the model Γ(S)
and given the advice string generated by sgen is able to
“guess” τ(z).
The simulated world: is described by a tuple
(A∗, sgen, τ, S,DS), where the adversary (A?) is a non-
oracle machine and sgen is the second auxiliary infor-
mation generator. The game between the Nature and A?

is exactly the same as in the MI-attack world, but A?

does not have oracle access to the learned model Γ(S).
Similarly, the gain is defined as:

sgain(A∗, sgen, τ, S,DS) =

Pr[A∗(sgen(S, z)) = τ(z)]

where the probability is taken over the randomness of
z ∼ DS , the randomness of sgen, and the randomness
of A∗.
Advantage: For (τ, S,Γ), the advantage of (gen, A)
over (sgen, A∗) is computed as

adv
(gen,A)
(sgen,A∗) = | gain(A, gen, τ, S,DS ,Γ)

− sgain(A∗, sgen, τ, S,DS)|.

Leakage: We say that Γ(S) has ε-leakage for (τ,DS)
with respect to (gen, sgen, A) if there exists an adversary
A∗ such that adv

(gen,A)
(sgen,A∗) ≤ ε. Finally, Γ(S) has ε-

leakage for (τ,DS) with respect to (gen, sgen) if for
any probabilistic adversary A, there exists an adversary
A∗ such that adv(gen,A)

(sgen,A∗) ≤ ε.

We remark that an interesting special case is to
evaluate the gain against a uniform distribution over the
training set. This case is interesting because a uniform
distribution over the training set gives an approximation
of the underlying data generating distribution D , as S
is i.i.d. drawn from D . As a result, the gain against the
uniform distribution over the training set also approxi-
mately measures the strength of the correlation for the
data generating distribution.
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The MI-Attack World The Simulated World
Oracle access to Γ (a linear-regression model). No access to the oracle.
τ : τ(z) = xi, the VKORC1 genetic marker. τ : τ(z) = xi.
gen: gen(S, z) = (x−i,y,marginals of S). sgen: sgen(S, z) = (x−i,marginals of S).
A: An estimator w.r.t. h, x−i,y,marginals of S. A∗: An estimator w.r.t. h, x−i,marginals of S.

TABLE I: Warfarin-dosage Attack of Fredrikson et al. [6]. We describe how to set up various parameters in order
to put the attack of [6] in our methodology. Note that in this formulation z takes the form of (x, y) and we feed y
to the adversary (not h(x)). This is important because in Fredrikson et al.’s case, for the patients participating in
the dataset, y does not come from model output, but rather is determined by medical doctors. Thus h(x) is only
an approximation of y.

Modeling Examples. We now discuss several examples
of applying our methodology.

Example 1 (Warfarin Attack [6]). Our first example
is the Warfarin-dosage attack in the original work of
Fredrikson et al. [6]. The Warfarin-dosage attack is a
black-box MI attack in the supervised learning setting.
Thus Z = X × Y and X =

∏n
i=1Xi where Xi’s are

binary encoding of features, such as genotypes, race, etc.
The attack, put in our formalization, is summarized in
Table I.

Note that in this formulation z takes the form of (x, y)
and we feed y to the adversary (not h(x)). This is
important because in Fredrikson et al.’s case, for the
patients participating in the dataset, y does not come
from model output, but rather is determined by medical
doctors. Thus h(x) is only an approximation of y.

Example 2 (Inferring Participation). A common privacy
attack is to infer whether an individual is in a dataset.
For example, differential privacy addresses such attacks,
and uses noise to hide the participation of any individual
(so, with/without a specific individual, the adversary
draws the same conclusion with high probability.)

We note that participation attacks fit naturally into our
methodology. In particular, consider the following goal
function τ , for z ∈ Z,

τ(z) =

{
1 z ∈ S,
0 otherwise.

That is, given z ∈ Z, the goal of the adversary is to
decide whether z is in the training set or not.

One may think that differential privacy is precisely the
countermeasure for this attack. However, in principle it
is not, although applying differential privacy may have
certainly effect the outcome.

This is because the design of differential privacy
allows learning correlations, subject only to that any
individual participation will not be able to change the
correlation significantly. Therefore, once the correlation
is found, one may still be able to use this correlation to
infer participation of a population with certain accuracy.

Nonetheless differential privacy ensures that localized to
any particular individual, his or her participation will
not significantly change the results of such inferences (so
the guarantee here is a form of “plausible deniability”
for that particular individual). We remark that it would
be interesting to carry out this attack empirically in a
real-world setting.

B. White-Box MI

We now move on to consider white-box MI attacks.
We will now assume that the adversary has some addi-
tional knowledge about the model structure. The question
is, however, how to model this knowledge about the
structure?

We observe that machine learning models typically
adopt a sequential composition of computations. For
example, in the simplest case of linear models, one
first computes a linear representation of the features,
and then applies, for example, a logistic function to
make a prediction (representing a probability in this
case). As another example, in “one-vs-all” multiclass
logistic regression, one trains multiple binary logistic
regression models, each encoding the “likelihood” of a
particular class, and then makes a final prediction based
on these confidence information. As observed in [7],
being able to observe such intermediate information,
even though they might be highly compressed compared
to the original information, can give the adversary a
significant advantage in deducing sensitive values.

We are thus motivated to consider white-box MI
attacks in the particular case of sequential composition.
We note that this is in sharp contrast with attacks in
cryptographic settings where the protocols typically have
a significantly more complicated composition structure
(compared to sequential composition). We start by defin-
ing machine learning models with k layers.

Definition 1 (k-Layer Model). Let X be a feature space
and Y1, . . . , Yk be k output spaces. A k-layer model M
is a model where its computation can be represented as a
composition of k functions h1, . . . , hk, where h1 : X 7→
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Y1 and hi : Yi−1 7→ Yi (2 ≤ i ≤ k). The output of hk is
the output of the entire model.

We can now define white-box MI attacks. Compared
to the black-box case, the only thing changes now is
that: (i) the adversary is aware of the composition struc-
ture, and (ii) he might be able to observe intermediate
information passing between the layers. We have the
following definition.

Methodology 2 (k-layer White-Box MI Attack). The
methodology of white-box MI attack is the same as the
black-box one, except for two differences:
• Instead of letting the adversary A have oracle access

to the model, we feed the k-layer representation
of the machine-learning model as input to the
adversary.

• The auxiliary information generators gen and sgen
take an additional parameter Γ (the learning algo-
rithm). This allows the auxiliary information gen-
erators to generate information that might depend
on the learning algorithm Γ (see Example 4). An
important point to note is that in the simulated
world the adversary still does not have access to
the model Γ(S).

Modeling Examples. As in the black-box case, we now
express existing attacks using our methodology.

Example 3 (Decision Tree [7]). In [7] the authors
studied the following attack against decision trees. Not
only does the adversary know the model structure, but
also he knows, for each path of the tree, how many
instances in the training set correspond to that path.
In other words, the adversary knows both the exact
decision tree, as well as the confidence information of
each path (intuitively, one wants to follow the path
that more training instances follow). They show that
with such confidence information one can significantly
improve attack accuracy.

Such a scenario can be captured by our methodology.
The decision tree model is directly fed as input to the
adversary. For the confidence information, the adversary
can compute on its own by simulating the model on every
instance of S. The adversary can do so because he is
all-powerful and has white-box access to the model.

Example 4 (Neural Network [7]). As we mentioned
before, [7] also studied another attack where for a neural
network with a softmax layer (this layer encodes the
probabilities corresponding to each class), the adversary
can query for probability in that layer. Again, accessing
this piece of information significantly improves attack
accuracy.

This attack can also be easily captured by our method-
ology. One potential subtlety is the softmax probabilities,
which cannot be computed by the adversary directly,
though he has white-box access to the model. This
is because he only knows partially the original input.
Nevertheless, this can be generated by the auxiliary
information generator by simulating Γ(S) on z and
encode the output of the softmax layer in the auxiliary
information.

Interestingly, we observe that several privacy at-
tacks [8], [9], [10] for recovering image features, which
appeared before the work of Fredrikson et al. [6], can
also be captured using white-box MI attacks in a similar
way. Due to lack of space, we defer a detailed description
to the full version of this paper.

III. PRELIMINARIES

We now present technical preliminaries to facilitate
our later development. In the first part of this section we
give some background on Boolean analysis, which will
be needed for our development of black-box MI attacks.
In the second part we present some assumptions we put
on the machine learning models.

Boolean Analysis. We need some elementary concepts
from Boolean analysis. More details regarding these
concepts can be found in O’Donnell [11]. In Boolean
analysis, a Boolean function f : {−1, 1}n 7→ {−1, 1} is
viewed as a 2n-dimensional real vector, and we consider
an inner product space of these vectors, where the inner
product is defined as 〈f, g〉 = Ex∼{−1,1}n [f(x)g(x)].
A central concept of Boolean analysis is its Fourier
expansion, where the Fourier basis is the set of all parity
functions Ω = {χS : S ⊆ [n]} where χS(x) =

∏
i∈S xi

is the parity function of bits in S. Any function f can
be represented as f =

∑
S⊆[n] f̂(S)χS where f̂(S) is

called the Fourier coefficient of f at S.

Definition 2 (Influence). Let f : {−1, 1}n 7→ {−1, 1}
and i ∈ [n]. The influence of i-th coordinate of f is
Inf i(f) = Prx∼{−1,1}n [f(x) 6= f(x⊕i)] where x⊕i

means to flip the i-th bit of x.

Influence is related to the difference operator Di.

Definition 3. Di is a linear operator applied
to a Boolean function such that (Di f)(x) =
f(xi→1)−f(xi→−1)

2 . Here xi→1 means we set the i-th bit
of x to 1.
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Definition 4. Let b ∈ {−1, 1} and −1 ≤ ρ ≤ 1. A
random bit b′ is ρ-correlated with b if

b′ =

{
b w.p. 1

2 + ρ
2

−b w.p. 1
2 −

ρ
2

We write it as b′ ∼ Nρ(b). As ρ tends to 1, b′ is more
likely to be b.

We say that z and x are ρ-correlated if each zi is
drawn independently from Nρ(xi), for i ∈ [n]. In such
a case, we write it as z ∼ Nρ(x).

Definition 5 (Noise Stability). Let −1 ≤ ρ ≤ 1. The
ρ-noise stability of f , denoted as Stabρ[f ], is defined
to be Stabρ[f ] = Ex∼{−1,1}n

y∼Nρ(x)

[f(x)f(y)] .

Definition 6 (Stable Influence). Let 0 ≤ ρ ≤
1. The ρ-stable influence of f at i, denoted as
Inf

(ρ)
i [f ], is defined to be Inf

(ρ)
i [f ] = Stabρ[Di f ] =

Ex∼{−1,1}n
y∼Nρ(x)

[Di f(x) Di f(y)] . Note that when ρ = 1,

this reduces to Inf i[f ].

Definition 7 (Noise Operator). Let −1 ≤ ρ ≤ 1.
The noise operator Tρ is defined as Tρ f(x) =
Ey∼Nρ(x)[f(y)].

The following lemma gives some elementary proper-
ties of the noise operator and stable influence.

Lemma 1 (O’Donnell[11]). We have the following
• Tρ is a linear operator.
• Tρ f =

∑
S⊆[n] ρ

|S|f̂(S)χS .
• Stabρ[f ] = 〈f,Tρ f〉 =

∑
S⊆[n] ρ

|S|f̂(S)2.

Model Inversion. Because our functions are models
learned from collected data, we will make the following
assumption on the models:

Definition 8 (No Trivial Feature Assumption). Let f :
{−1, 1}n 7→ R be a model learned from data. The no
trivial feature assumption states that every feature has
nontrivial influence. That is, for any i ∈ [n], Inf i[f ] > 0.

The following simple proposition shows that if
Inf i[f ] = 0, then one can obtain an “equivalent”
function over the Boolean cube without xi.

Lemma 2. Consider any f : {−1, 1}n 7→ {−1, 1}.
Suppose that Inf i[f ] = 0, then there exists another
function g which maps x1, . . . , xi−1, xi+1, . . . , xn to
{−1, 1}, such that Inf j [g] = Inf j [f ] for any j 6= i.

IV. BLACK-BOX MI ATTACKS

In this section we study black-box MI attacks. Due to
lack of space, we will focus on the simplest possible

models – binary classification, where all the features
are binary as well. In the full version of this paper,
we also extend the results to binary classification over
generalized but finite domains.

Recall that our main technical goal is to isolate
important factors that can affect model invertibility.
Unfortunately, our formulation in Section II is quite
complex so many factors may play a role. For example,
intuitively the training process may have an impact – if
we know that a model is trained using linear regression,
would this give us an advantage? On the other hand,
if one thinks about MI attacks at the application phase,
where a model is fixed anyway, then it suggests that
invertibility should be independent of the training.

To gain more understanding, we choose to start with
simple scenarios where we can characterize model in-
vertibility exactly. Interestingly, even these very abstract
and seemingly oversimplified scenarios provide insights
to our main question. Perhaps more importantly, they
also give rise to intriguing and natural questions that
provide ample scope for future investigations.

Specifically, in this section we specialize Methodol-
ogy 1 in the following ways:
• We consider a Boolean model h : {−1, 1}n 7→
{−1, 1} in the test phase.

• We assume that the model invertibility is evaluated
over the uniform distribution. That is, we assume
that a feature vector is drawn uniformly from
U{−1,1}n .

• We consider two simple auxiliary information gen-
erators. In the first, noiseless generator gen1,

gen1(S, (x, y)) = (x−i, y).

In the second independent perturbation generator,

genρ(S, (x, y)) = (z−i, y)

where each bit of z−i equals that of x−i with
probability 1

2 + ρ
2 , and is flipped otherwise, or

z−i ∼ Nρ(x−i). Note that for ρ = 1 it degenerates
to our noiseless generator.

Under these specializations our main results are sum-
marized as follows1.

1) In the noiseless case, we characterize model invert-
ibility using the influence of a Boolean function.
Interestingly, it turns out in this case, model invert-
ibility is independent of the training. These results
are presented in Section IV-A.

2) In the noisy case, we show that model invertibility
is related to the stable influence of a Boolean

1 For sake of exposition, the proofs are put in the appendix.
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function, though stable influence does not exactly
capture the invertibility. These results are presented
in Section IV-B.

3) Interestingly, we find that under noise, there is an
interesting phenomenon where a highly invertible
model quickly becomes highly non-invertible with
only a little noise. We study this phenomenon under
the name “invertibility interference.” The results are
presented in Section IV-C.

A. Model Invertibility with No Noise

We now specialize our methodology for black-box MI
attacks to the noiseless scenario.

Definition 9 (Noiseless Uniform Black-Box attack). Let
(Z,H, `) be a learning problem where H consists of
hypotheses of the form {−1, 1}n 7→ {−1, 1}. Let Γ be a
learning algorithm and S be a training set. For simplicity
we denote Γ(S) as h. Noiseless Uniform Black-Box MI
attack for coordinate i is the following game.
The MI-attack world: Let A be a probabilistic algorithm
with binary output, then

i. Nature draws (x, y) from DU . That is, nature draws
x ∼ {−1, 1}n, and set y = h(x).

ii. Nature presents

gen1(S, (x, y)) = (x−i, y)

to the adversary.
iii. Adversary outputs AΓ(S)(x−i, h(x)).
The gain of this game is Pr[AΓ(S)(x−i, h(x)) = xi],
where the probability is over samples x1, . . . , xn, and
the randomness (if any) of the adversary.
The Simulated World: In this case sgen1 is defined as
sgen1(S, (x, y)) = x−i. Because xi is independently
and uniformly drawn from {−1, 1}, so for any simulated
attack A∗, Pr[A∗(x−i) = xi] = 1/2.

Therefore, the advantage of the game is defined to be
Pr[AΓ(S)(x−i, h(x)) = xi]− 1/2.

For this type of MI attack, we consider the following
deterministic algorithm for the adversary A.

We have the following simple lemma.

Lemma 3. Let A1 denote Algorithm 1. Then
gain(A1, gen1, xi,DU , S,Γ) = 1

2 + Inf i[Γ(S)]
2 , and so

the advantage is Inf i[Γ(S)]
2 . Further this gain is optimal.

While this lemma is trivial to prove, an interesting
observation regarding it is that the invertibility is in-
dependent of the training. That is, no matter what Γ
and S are (and what distribution S is drawn from), the
invertibility is characterized by influence, which is an
intrinsic property of the model itself.

Input: x1, . . . , xi−1, xi+1, . . . , xn. y ∈ {−1, 1}.
Oracle access to f .

Output: b ∈ {−1, 1}.
1 Compute y1 = f(x1, . . . , xi−1,−1, xi+1, . . . , xn),

and
2 y2 = f(x1, . . . , xi−1,+1, xi+1, . . . , xn).
3 If y1 6= y2, then if y1 = y, output −1, otherwise

output +1.
4 Otherwise, output the constant 1.
Algorithm 1: A Deterministic Algorithm for Noise-
less Uniform Flat MI Attack.

For noiseless MI attacks, it is also easy to characterize
the most and least invertible functions. In the following
recall that we assume the nontrivial feature assumption.

Most Invertible Functions. With the no trivial feature
assumption, the most invertible function is χ[n](x) =∏n
i=1 xi, where every coordinate has influence 1, and so

the advantage is 1/2.

Least Invertible Functions. What functions are least in-
vertible if we measure the invertibility by the maximum
influence MaxInf i[h]? In this direction, a natural can-
didate is the majority function. Indeed, using Stirling’s
formula (see Exercise 2.22 [11].), one can estimate that
Inf i[MAJn] ≈ O(1/

√
n) for every i ∈ [n]. There are

functions with much smaller influence. For example,

ORn(x) =

{
1 x1 = x2 = · · · = xn = 1.
−1 otherwise.

Then it is easy to check that Inf i[ORn] = 21−n for
every i ∈ [n]. We can also characterize the structure of
the least invertible functions. Under the no trivial feature
assumption, these functions are those that are “constant
except at one point.”

Lemma 4. Consider any h : {−1, 1}n 7→ {−1, 1}. If
Inf i[h] > 0, then Inf i[h] ≥ 21−n.

Lemma 5. Let h : {−1, 1}n 7→ {−1, 1} be a Boolean
function. If Inf i[h] = 21−n for some i ∈ [n], then
Inf i[h] > 0 for every i ∈ [n].

Theorem 1. Let h : {−1, 1}n 7→ {−1, 1} be a Boolean
function. Then h satisfies the property that for every i ∈
[n], Inf i[h] = 21−n if and only if h is constant except
at a unique point x0. In other words, there exist x0 ∈
{−1, 1}n and b ∈ {−1, 1} such that

h(x) =

{
b if x = x0,

−b otherwise.
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Recall that a Boolean-valued function is unanimous
if h(1, . . . , 1) = 1 and h(−1, . . . ,−1) = −1. Therefore
we have the following two corollaries,

Corollary 1. ORn and ANDn are the only unanimous
Boolean functions where maximum influence is 21−n.

Corollary 2. ORn and ANDn are the only monotone
Boolean functions where maximum influence is 21−n.

B. Model Invertibility with Independent Noise

We now move on to the independent perturbation case.

Definition 10 (ρ-Independent Perturbation Uniform
Black-Box MI Attack). Let (Z,H, `) be a learning
problem where H consists of hypotheses of the form
{−1, 1}n 7→ {−1, 1}. Let Γ be a learning algorithm and
S be a training set. For simplicity we denote Γ(S) as
h. ρ-Independent Perturbation Uniform Black-Box MI
attack for coordinate i is the following game.

The MI-Attack world: Let A be a probabilistic algorithm
with binary output, then

i. Nature draws (x, y) from DU . That is, nature draws
x ∼ {−1, 1}n, and set y = h(x).

ii. Nature presents

genρ(S, (x, y)) = (z−i, y)

to the adversary.
iii. Adversary outputs AΓ(S)(z−i, y).
The gain of this game is Pr[AΓ(S)(z−i, y) = xi],
where the probability is over samples x1, . . . , xn, the
randomness of genρ, and the randomness (if any) of the
adversary.

The simulated world: For simulation, sgenρ is defined
as sgenρ(S, x−i, y) = z−i. Because xi is independently
and uniformly drawn from {−1, 1}, so for any simulated
attack A∗, Pr[A∗(z−i) = xi] = 1/2.

Therefore, the advantage is defined as
Pr[AΓ(S)(x−i, y) = xi]− 1/2.

We now consider the following algorithm correspond-
ing to the adversary A. The algorithm is the same as
Algorithm 1, we repeat it here and note that now the
input to the algorithm is z−i, instead of x−i.
The gain of this algorithm is exactly the so called
stable influence. Intuitively this is clear: Recall from
Definition 6 that stable influence is defined as
Ex∼{−1,1}n,z∼Nρ(x)[Di f(x) Di f(z)]. Thus if Di f(x)
and Di f(z) are of the same sign then Algorithm 2
guessed correctly. If the signs are different, then the
guess is incorrect. Otherwise, one can show that the gain
is 1/2. Formally, we have the following theorem.

Input: z1, . . . , zi−1, zi+1, . . . , zn. y ∈ {−1, 1}.
Oracle access to f .

Output: b ∈ {−1, 1}.
1 Compute y1 = f(z1, . . . , zi−1,−1, zi+1, . . . , zn),

and
2 y2 = f(z1, . . . , zi−1,+1, zi+1, . . . , zn).
3 If y1 6= y2, then if y1 = y, output −1, otherwise

output +1.
4 Otherwise, output the constant 1.

Algorithm 2: A Deterministic Algorithm for ρ-
Perturbation Uniform Singleton Flat MI Attack.

Theorem 2. Let ρ ∈ [0, 1]. Let Aρ denote Algorithm 2.
Then

gain(Aρ, genρ, xi,DU , S,Γ) =
1

2
+

Inf
(ρ)
i [h]

2

where Inf
(ρ)
i [h] is the ρ-stable influence of h (See

Definition 6) at i-th coordinate.

For ρ = 1, Inf1
i [h] = E[Di f(x) Di f(z)] =

E[Di f(x)2] = Inf i[h]. We thus get back the influence
in the noiseless model of Lemma 3.

Remark 1 (On Optimality). Unfortunately, we note that
for the ρ-independent perturbation model, Algorithm 2
no longer achieves the maximum possible gain. That is,
there exists some model h : {−1, 1}n 7→ {−1, 1} and
some inversion algorithm A′, such that the gain of A′ is
larger than (1+Inf

(ρ)
i [h])/2. The intuition is that, since

the adversary knows h(x) exactly, so it can leverage the
function table of h to “de-noise”, For example, consider
ORn. As long as we see that the model output is 1, we
know that all input bits are 1. Therefore, the advantage
we can achieve, even in the independent perturbation
model, is Inf i[ORn]/2 = 2−n for any 0 ≤ ρ ≤ 1.
On the other hand, the advantage of Algorithm 2 is
ρn−12−n. We pose the following question that we would
like to investigate in the future.

Question 1. Consider ρ-independent perturbation
model. Let Aρ denote Algorithm 2. Is it the case that
for any h : {−1, 1}n 7→ {−1, 1}, and any probabilistic
algorithm A′,

gain(A′, genρ, xi,DU , S,Γ)

≤ gain(Aρ, genρ, xi,DU , S,Γ) + on(1) ?

C. Invertibility Interference

Intuitively it is clear that noise will negatively the
gain of the adversary. Theorem 2 quantifies this intuition
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using stable influence. For example, as we saw in the
above, the gain of a natural algorithm (Algorithm 2) on
ORn goes from Inf i[ORn] to ρn−1 Inf i[ORn], which
is exponentially small in the influence. However, this
example is not very interesting in the sense that the
influence of ORn is already very small (21−n) in the
noiseless case.

A more interesting phenomenon regarding noise is that
highly invertible models in the noiseless case quickly be-
comes highly non-invertible due to a little noise. The rea-
son behind is that multiple influential coordinates inter-
fere with each other under noise. Let us see an example.
In the noiseless model the most invertible function is the
parity function χ[n] =

∏
i∈[n] xi. In this case, Inf i[f ] =

1 for every i. On the other hand, under independent
noise, the invertibility of χn becomes Inf (ρ)

n

[
χ[n]

]
=

Stabρ
[
Dn χ[n]

]
=
〈
χ[n−1],Tρ χ[n−1]

〉
= ρn−1. There-

fore the invertibility decays exponentially fast in n.
We term this phenomenon “invertibility interference:”

When noise presents, if one does not know one of these
influential coordinates exactly, then he cannot effectively
invert the model to deduce the target feature. What is the
stable influence if we have t influential coordinates? In
this direction, we have the following simple result:

Theorem 3. Suppose that h : {−1, 1}n 7→ {−1, 1} has
t coordinates with influence 1. Let 0 < ρ ≤ 1, then for
any i ∈ [n], Inf (ρ)

i [h] ≤ ρt−1 Inf i[h].

Question 2. If, instead of having coordinates of influ-
ence 1, we are only guaranteed that individual influence
is lower bounded by 1− δ for some δ > 0, how fast will
the stable influence decay with respect to δ?

V. WHITE-BOX MI ATTACKS

We now move on to study white-box MI attacks. As
discussed before, we assume that the computation of the
models follows a sequential composition. This thus gives
a natural view of MI attacks as communication games:
One can think of each layer of the model as a player who
sends a message to the next player, and the adversary as
another player who observes the model output and has
some additional information. Together, the goal of this
game is to compute some function τ . This view gives a
natural question:

“How would knowing the communication structure and
(possibly) observing some intermediate information in

the communication help MI attacks?”

Empirically, the answer is that it helps a lot. As men-
tioned earlier, it is essential for white-box attacks as
studied in [7] to have access to the auxiliary confidence

information, which makes the inversion algorithm much
more effective.

The main purpose of this section is to give theoretical
justifications for these empirical observations. At a high
level, our results are summarized as follows:

1) Similar to our study of black-box MI attacks, we
choose to specialize our methodology so as to
obtain theoretical insights. To do so, we focus
on white-box MI attacks on decision trees. An
advantage of studying attacks on decision trees is
its simplicity: The communication channel is very
restricted, not only it is a sequential composition,
but also in each iteration a player only reads a single
bit of the input, and decides a binary output.

2) We show how to interpret white-box MI at-
tacks on decision trees as alternating (communica-
tion) games. Specifically, these are communication
games where the communication channel is one-
way, unicast (following the sequential composition),
and players alternatively hold two inputs. We give
examples showing that these communication games
are very restricted.

3) We show that, however, even when restricting these
communication games to have 1 bit of communica-
tion between two neighboring players, it is still the
case that for any goal function τ , there exists a game
with enough players (corresponding to a machine
learning model with enough many layers), such that
there is an adversary who can compute τ correctly
everywhere. This result illustrates the unexpected
computational power of a restricted communication
game, and in particular, that the leakage can be
significant even in a very restricted white-box case.

We now give more details in the rest of this section.

A. Decision Trees, MI Attacks, and Alternating Games

From now on we consider oblivious decision trees,
which are decision trees in which the same feature
is examined at each level (of the tree). This restricts
the machine learning models we consider (it is even
a subclass of decision trees). Note that, however, the
more we restrict the model (and its communication),
the stronger our conclusion (regarding leakage in the
white-box case) is if we can show significant information
leakage.

We have mentioned that for a model with sequential
composition, the communication channel is restricted: it
is one-way and unicast. That is, each player only sends
one message to the next player, in a fixed order. This is
in sharp contrast with communication games studied in
typical communication complexity literature [12], [13],
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[14], [15], [16], [17], [18], where the channel is either
bidirectional or the messages are broadcasted.

We note that for oblivious decision trees, such com-
munication games are further restricted. Consider an
adversary who knows part of the input to the decision
tree, then the communication game alternates between
input he knows and input he does not know. Specifically,
suppose that the input to the decision tree is z ∈ {0, 1}n,
and assume that the adversary can see the bits at posi-
tions K ⊆ [n] (K stands for “known” positions), then,
without loss of generality, the communication game can
be viewed as: the first player examines several variables
at positions in K, then sends a bit to the next player,
who then examines several variables in [n] \K, and so
on. The final player, which is the adversary (who knows
bits in K), determines an output.

The following definition captures our discussion so far
mathematically:

Definition 11 (Alternating MI Attacks (AMI Attacks)).
Let n, ` be natural numbers. Let k ≥ 3 be also a natural
number. In Alternating MI Attack there are (k − 1) ≥ 2
functions: h1, . . . , hk−1 in the form of h1 : {0, 1}n 7→
{0, 1}` and hi : {0, 1}n × {0, 1}` 7→ {0, 1}` (i =
1, . . . , k− 1). let h(1), . . . , h(k−1) : {0, 1}n×{0, 1}n 7→
{0, 1}` be the following sequence:

h(1)(x, y) = h1(x)

h(i)(x, y) = hi(y, h
(i−1)(x, y)) i = 2, 4, . . .

h(i)(x, y) = hi(x, h
(i−1)(x, y)) i = 3, 5, . . .

Let A be a probabilistic algorithm that is an “adver-
sary.” Let τ : {0, 1}n × {0, 1}n 7→ {0, 1} be a Boolean
function on 2n bits. The alternating MI attack proceeds
as follows:

i. Nature samples x, y uniformly random from {0, 1}n.
ii. If k is odd, then nature presents x to A, but not y.

Otherwise, nature presents y to A, but not x.
iii. Nature also presents the output of h(k−1), that is the

output of the “outermost model”, to A.
For odd k, the gain of the alternating MI attack is
measured by

Pr[A(x, h(k−1)(x, y)) = τ(x, y)].

Similarly for even k, the gain is defined as
Pr[A

(
y, h(k−1)(x, y)) = τ(x, y)

]
. Both probabilities

are taken over all the randomness: the randomness of
sampling x, y (uniformly), the private randomness of
h1, . . . , hk, and the randomness of A.

Note that the adversary in this formulation can only
see the output of the outer model (h(k−1)), beyond

knowing part of the input. However, we also want to cap-
ture the intuition that the adversary may “inspect” some
messages passed between layers in a machine learning
model. We thus consider the following modification of
the definition:

Definition 12 (Alternating MI Attacks with Early Inspec-
tion). In alternating MI attacks with early inspection, the
only difference is that instead of feeding h(k−1) to the
adversary, the adversary can choose once to inspect the
output of h(i) (1 ≤ i ≤ k − 1), and based on that to
compute the output.

Note that we restrict the adversary to be only able to
inspect once — this is, again, to pose restriction on the
communication, which gives stronger implication on the
risk of leakage.

In the above definition of alternating MI attacks, we
still need to distinguish between “layers” in a machine
model, and the adversary. Towards our main result,
which states that for any goal function τ there exists a
model (with enough layers) that can allow an adversary
to compute τ everywhere, we find that it is more
convenient to work with a definition where we do not
distinguish between functions inside a model and the
function computed by the adversary. This leads to the
following definition.

Definition 13 (Alternating One-Way Unicast Communi-
cation Games (AOWU)). Let n, k, ` be natural numbers.
In Alternating One-Way Unicast Communication Games
we have:
(1) The goal of the communication is to compute some

function τ : {0, 1}n × {0, 1}n 7→ {0, 1}.
(2) There are k players, P1, . . . , Pk. These players are

allowed to use private randomness.
(3) The players communicate in the way of one-way

unicast. Namely, they play in the fixed order of
P1, . . . , Pk, and player Pi is only allowed to send
one message, a bit string of length `, to player Pi+1,
for i = 1, . . . , k − 1.

(4) Pk is required to output a single bit, which is viewed
as the output of the protocol.

Similar to alternating MI attack, one can define the
sequence of composed function P (1), . . . , P (k), where
P (i) is the function computed by the first i players on
{0, 1}n × {0, 1}n:

P (1)(x, y) = P1(x)

P (i)(x, y) = Pi(y, P
(i−1)(x, y)) i = 2, 4, . . .

P (i)(x, y) = Pi(x, P
(i−1)(x, y)) i = 3, 5, . . .

For AMI Attacks with Early Inspection, we have the
following definition,

11



Definition 14 (AOWU∗). An AOWU game with early
stopping, or called an AOWU∗ game, is an AOWU game
where any player Pi, i ∈ [k], can stop the protocol, and
claim his or her output as the output of the protocol.

From our discussion so far it follows that

Lemma 6. (n, k, `)-alternating MI attack and (n, k, `)-
AOWU games are equivalent. Further, (n, k, `-
alternating MI attack with early inspection and
(n, k, `)-AOWU∗ games are equivalent.

B. On the Power of AMI Attacks with Early Inspection

We now study the power of alternating MI attacks
with early inspection. Clearly, we can equivalently study
AOWU games with early stop. We show that, even
when restricting to 1 bit of communication, it is still
surprisingly powerful.

To motivate this result, let us fist give an example,
which illustrates “how restricted” these games are.

Example 5. Let IP(x, y) be the inner product of x and
y, that is for x, y ∈ {0, 1}n, IP(x, y) =

⊕n
i=1(xi ∧

yi). Consider one-way unicast alternating games that
try to compute IP(x, y). The communicated messages
are restricted to be of 1-bit long (that is ` = 1).

Let us consider the simple case that n = 2. That is,
we want to compute the inner product of two length-
2 bit strings. Note that in the traditional two-player
communication model where Alice holds x and Bob
holds y, then there is a trivial protocol where Alice sends
to Bob 2 bit messages, one x1 and one x2, so that Bob
then has complete knowledge of x and can compute any
function on x, y.

However, with AOWU games, there is a now a diffi-
culty. Suppose that P1 sends x1 to P2, and P2 computes
x1y1. Then what will P2 send to P3? If P2 sends y2 to
P3, then the progress that P2 has made is essentially
lost. However, if he sends x1y1, P3 still does not know
any information about y2. Therefore, at least with 2 bits
communication they cannot solve the problem. What is
the “right” lower bound on the number of players that
are needed in order to compute inner product with 1 bit
of communication?

We now construct a “universal” protocol that can
compute any τ : {0, 1}n × {0, 1}n using an AOWU∗

protocol with 1 bit of communication.

Construction 1 (Universal-1 Protocol). Let τ : {0, 1}n×
{0, 1}n 7→ {0, 1} be any function. Consider the follow-
ing protocol:
• There are 2 · 2n = 2n+1 players, split into pairs,

(1, 2), (3, 4), (2i − 1, 2i), . . . , (2n+1 − 1, 2n+1).

Note that odd-numbered players hold x, and even-
numbered players hold y.

• Player 2i− 1 sends the following bit to player 2i:
He sends 1 if x is the lexicographically the i-th
smallest string of all binary strings of length n.
For example, player 1 sends 1 to player 2 if x = 0,
and sends a bit 0 otherwise.

• For player 2i, if she receives a bit 1, then she
can be certain about the value of x. Because she
also knows y, she can compute τ(x, y), stops the
protocol early by asserting the special stopping bit,
and claims the output. Otherwise, she keeps the
special stop bit as 0 to indicate player 2i + 1 to
continue the protocol.

Note that early stopping is essential here, otherwise
player 2i+ 1 cannot distinguish between a “value” that
is for computing τ and a “signal” which indicates that the
computation is already done. Following the construction
we immediately have the following theorem,

Theorem 4. Universal-1 protocols compute any τ with
1-bit message and 2n+1 players.

Thus we have obtained the claimed main result re-
garding alternating MI attacks with early inspection.

Theorem 5. For any goal function τ : {0, 1}n ×
{0, 1}n 7→ {0, 1}, there exists a machine learning
model with O(2n) layers, and an alternating MI attack
with 1-bit communication, that computes τ correctly
everywhere.

We close this section with two open questions.

Question 3. For 1-bit communication, is universal-1
protocol essentially optimal in the sense that there is
a function τ : {0, 1}n × {0, 1}n where any protocol
computing τ requires Ω(2n) rounds of communications?

Question 4. For 1-bit communication, is there a univer-
sal AOWU protocol (instead of AOWU∗) that computes
every function τ : {0, 1}n × {0, 1}n 7→ {0, 1}?

VI. CONNECTIONS WITH OTHER CRYPTOGRAPHIC
NOTIONS

In this section we compare MI attack with two clas-
sic cryptographic primitives: Hard-Core Predicate and
Secure Multiparty Computation. We assume that the
readers have some basic familiarity with cryptographic
terminologies.

Connection with Hard-Core Predicate. Let us first
recall the definition of hard-core predicate
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Definition 15 (Hard-Core Predicate [19]). Let Un be a
uniform distribution over {0, 1}n, and f : {0, 1}∗ 7→
{0, 1}∗. A polynomial time computable predicate b :
{0, 1}∗ 7→ {0, 1} is called a hard-core of f if for every
probabilistic polynomial time algorithm A′, there exists
a negligible function µ(·) such that for all sufficiently
large n’s

Pr
x∼Un

[A′(f(x)) = b(x)] ≤ 1

2
+ µ(n).

By viewing f as a “model”, one can then simulate
this definition by a black-box MI attack. Specifically,
let out(x) = b(x), which is to compute a single bit.
The joint distribution is JU = (Un, f(Un)). In the real
world, given x ∼ Un, the auxiliary information generator
gen gives the advice string gen(df , x, f(x)) = f(x) to
the adversary A′. One can then observe that the gain
of A′ in the real world, gainJU ,f,b(gen, A

′), is exactly
Pr(x,y)∼JU [A′(y) = b(x)] = Pr[A′(f(Un)) = b(Un)].
Therefore the goal of hard-core predicate is to find a
“hard” predicate b so that for any adversary A′, any
negligible function µ(·), and all sufficiently large n’s,
the gain gainJU ,f,b(gen, A

′) ≤ 1/2 + µ(n).
Following this simulation one can also observe two

notable differences: First, in an MI attack an adversary
typically has more auxiliary information than the case of
hard-core predicates (which only observes the function
output). For example, in a black-box MI attack as defined
in Definition 9, an adversary has information about all
except one feature. Second, we note that the goal of MI
attacks is not to construct hard predicates. Rather, its
goal is somewhat its “dual”: The purpose is to study the
leakage of certain model with respect to computing some
output function. For statistical output, understanding this
leakage may help us decide what information can be
safely published.

Connection with Secure Multiparty Computation
(SMC). A more interesting notion to compare with is
the Secure Multiparty Computation (SMC). To this end,
we recall first the definition of m-party secure protocols

Definition 16 (m-party secure protocols – sketch [20]).
Let f be an m-ary functionality and Π be an m-party
protocol operating in the real model.
• For a real-model adversary A, controlling some

minority of the parties (and tapping all communica-
tion channels), and an m-sequence x, we denote by
REALΠ,A(x) the sequence of m outputs resulting
from the execution of Π on input x under attack of
the adversary A.

• For an ideal-model adversary A′, controlling some
minority of the parties, and an m sequence x, we

denote by IDEALΠ,A(x) the sequence of m outputs
resulting from the ideal process (that they together
send input to a trusted third party, which then gives
back the output) on input x under attack of the
adversary A′.

We say that Π securely implements f with honest ma-
jority if for every feasible real model adversary A,
controlling some minority of the parties, there exists
a feasible ideal model, controlling the same parties,
so that the probability ensembles {REALΠ,A(x)}x and
{IDEALΠ,A(x)}x are computationally indistinguish-
able.

We observe that in this definition the privacy con-
cerns of the output is not considered. Specifically, it
can happen that in the ideal case, upon receiving the
output from the trusted third party, one can infer partial
information about the input of the other party. Yet such
concerns will not factor in the distinguishability as they
are contained in the ideal world. Put in another way,
the privacy concerns considered in a secure protocol is
whether the communication among parties in the real
world leaks additional information compared to the ideal
case.

Black-box MI Attacks and SMC. By contrast, for
black-box MI attack, one considers precisely the privacy
concerns of the output. That is how much sensitive
information an adversary can recover from the output.
To this end, one may argue that it is questionable why
should one be bothered with the concern of the output,
since this is the purpose of the computation.

On one hand, we feel that a fundamental difference
here is what information constitutes the output. In the
setting of SMC, the output is precisely defined (for
example, whether two inputs are equal). However, in the
setting of MI attack, the output is statistical and “noisy.”
For example, a model may carry too much information
of some individuals if the learning procedure over-fits.
Publishing such models may thus induce effective MI
attacks and unwanted disclosure. Studying MI attacks
can help us identify and quantify such leakage.

On the other hand, we note that, frequently, additional
information is intentionally revealed by an SMC pro-
tocol due to performance considerations (for example,
revealing the centroid in privacy-preserving clustering
or revealing a bit of a honest party’s input in the dual-
execution SMC protocol [21]). However, the ramifica-
tions of leaking this additional information are unclear.
Perhaps our framework can be used to address such
problems.

More concretely, let us consider a simple example
where our current results for MI attacks (though studied
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in the setting of machine learning) can be applied to
SMC. Consider two parties Alice and Bob who jointly
compute a Boolean function f(x, y), where x is Alice’s
input and y is Bob’s input. Suppose that the inputs are
drawn uniformly from two sets X,Y . Now if Bob is
malicious, and can see insensitive information x−i of
Alice for x ∼ X , then with access to f how much better
can he guess xi over X , compared to random guessing?

Let fy(x) = f(x, y) (i.e. fy is the specialization
of f where the second input is y). The answer to
this question becomes exactly an MI problem against
uniform distribution over X , where the adversary Bob
has auxiliary information x−i. Our results in Section IV
tells that the advantage is the influence of coordinate i
of the function fy(·)

Therefore, what remains is to estimate the influence
of coordinate i of fy . In this direction, we note that
recent years there has been interesting progress on the
algorithmic side of the influence theory. For example, a
recent work by Ron, Rubinfeld, Safra, Samorodnistsky
and Weinstein [22] proves lower bounds in approxi-
mating influence and gives a better upper bound for
monotone Boolean functions. By invoking their influence
estimation algorithms (for example, their Algorithm 1),
one can thus obtain a quantitative understanding of the
risk of outputting the function f .

White-box MI Attacks and SMC. This situation changes
when we consider white-box MI attack. Intuitively, in
composed MI attack, if one view sub-models as “par-
ties”, then we can ask how much information do these
compositions (or communication) leak. Therefore, even
if one modulo the concerns of the output of the outer-
most model, one could still investigate the additional
leakage caused by the composition (or communication).
This is closer to the goal of SMC.

Unlike SMC, however, is that the communication
pattern of the white-box MI attacks is usually much
more restricted. For example, composition of models
in the usual sense gives “one-way unicast communica-
tion”, rather than broadcasts, or arbitrary point-to-point
communication (so it is not one-way). Indeed, as we
saw in the paper, this way of communication induces
intriguing and somewhat unexpected connections with
communication complexity that does not seem to have
been studied before.
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APPENDIX

Proof of Lemma 2

Proof. Because Inf i[f ] =
∑
S:i∈S f̂(S)2, so if

Inf i[f ] = 0, this means f̂(S) = 0 for any i ∈ S. In
particular, we can set now g to be the following function:

g(x1, . . . , xi−1, xi+1, . . . , xn) =
∑
S 63i

f̂(S)xS .

f(x) = g(x−i) and Inf j [g] = Inf j [f ] for any j ∈ [n],
j 6= i.

Proof of Lemma 3

Proof. For any fixed x1, . . . , xi−1, xi+1, . . . , xn, if
f(x) 6= f(x⊕i), then we guess xi right with probability
1. Otherwise, conditioned on f(x) = y, xi is uniformly
and independently distributed over {−1, 1}. In this case,
by constantly guessing 1 the correct probability is 1/2.
This gives the desired gain of Algorithm 1, as well as
its optimality.

Proof of Lemma 4

Proof. If for any input x, f(x) 6= f(x⊕i), then there are
at least two inputs, namely y = x, x⊕i such that f(y) 6=
f(y⊕i), this shows the probability Prx∼{−1,1}n [f(x) 6=
f(x⊕i)] ≥ 21−n.

Proof of Lemma 5

Proof. Without loss of generality, assume for contradic-
tion that x1 has influence 0. Then by Lemma 2, there is a
function g(x2, . . . , xn) such that Inf j [g] = Inf j [f ] for
every j ≥ 2. Now by Lemma 4, Inf j [f ] = Inf j [g] ≥
22−n > 21−n for every j ≥ 2, contradiction.

Proof of Theorem 1

Proof. (⇐)(⇐)(⇐) If f is constant except at a unique point x0,
then for any i, the only inputs x on which f(x) 6= f(x⊕i)
are x = x0 and x = x⊕i0 . This proves that Inf i[f ] =
21−n.

(⇒)(⇒)(⇒) We induct on n. If n = 1, then Inf1[f ] = 1, so
f(x1) = x1 or −x1 and the result is true. Fix any n ≥ 2.
The induction hypothesis is the following: Let g be a
Boolean function on k ≤ (n − 1) variables. If every
coordinate of g has influence 21−k, then g is constant
except at one point.

Now let f be a function on n variables that Inf i[f ] =
21−n for every i ∈ [n]. Consider two Boolean functions
on n−1 variables, g(x2, . . . , xn) = f(1, x2, . . . , xn) and
h(x2, . . . , xn) = f(−1, x2, . . . , xn). We claim that the
influence of x2 is 22−n in one of g and h, and 0 in the
other. Indeed, by the assumption that Inf2[f ] = 21−n,
there must be a unique setting z−2 = (z1, z3, . . . , zn)
such that f(z2→1) 6= f(z2→−1). Note that z1 is fixed to
be 1 or −1, thus the influence of x2 is 22−n in g or h,
and 0 in the other.

Without loss of generality, suppose Inf2[g] = 22−n.
Note that g is defined over n − 1 variables, so by
Lemma 5, Inf j [g] > 0 for every 2 ≤ j ≤ n. On the other
hand, clearly Inf j [g] ≤ 22−n for every j = 2, . . . , n.
Thus we can apply the induction hypothesis to conclude
that g is constant except one point. Moreover, h is
constant. Finally, suppose g(y) = b except g(y0) = −b
where y0 ∈ {−1, 1}n−1 and b ∈ {−1, 1} is some fixed
point. Because Inf1[f ] = 21−n, so it must be that h ≡ b.
This shows that f is constant except at one point.

Proof of Theorem 2

Proof. Let A denote Algorithm 2. Let α = f(xi→1) −
f(xi→−1) and β = f(zi→1) − f(zi→−1). Consider the
following four disjoint events:
(E1) αβ > 0. Conditioned on E1 happens, A always

outputs the correct bit. Thus in this case Pr[b =
xi | E1] = 1.

(E2) αβ < 0. Conditioned on E2 happens, A always
output −xi upon input z−i. Thus in this case
Pr[b = xi | E2] = 0.

(E3) β = 0. In this case A outputs a uniform random
bit. Thus Pr[b = xi | E3] = 1

2 .

(E4) α = 0 but β 6= 0. We claim that Pr[b = xi | E4] =
1/2. Indeed, noting that A is deterministic, writing
out all the randomness we have

Pr[b = xi | E4]

= Pr
[
A(z−i, f(x)) = xi

∣∣∣
f(xi→1) = f(xi→−1),

f(zi→1) 6= f(zi→−1)
]

Note that the event E4 ={
f(xi→1) = f(xi→−1), f(zi→1) 6= f(zi→−1)

}
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only depends on x−i, and is independent of xi,
so the above is

Pr[b = xi | E4]

=
1

2

(
Pr[A(z−i, f(xi→1)) = 1 | E4]

+ Pr[A(z−i, f(xi→−1)) = −1 | E4]
)

Note that conditioned on E4,

Pr
x−i∼{−1,1}n−1

z−i∼Nρ(x−i)

[A(z−i, f(xi→−1)) = −1 | E4]

= Pr
x−i∼{−1,1}n−1

z−i∼Nρ(x−i)

[A(z−i, f(xi→1)) = −1 | E4]

This gives that

Pr
x−i∼{−1,1}n−1

z−i∼Nρ(x−i)

[A(z−i, f(xi→1)) = 1 | E4]

+ Pr
x−i∼{−1,1}n−1

z−i∼Nρ(x−i)

[A(z−i, f(xi→−1)) = −1 | E4]

=1

Therefore, the probability of guessing correctly is
Pr[E1] + Pr[E3]+Pr[E4]

2 . Observe that Pr[E1] − Pr[E2]
is exactly the ρ-stable influence (ρ ∈ [0, 1]),

Pr[E1]− Pr[E2] =E[Di f(x) Di f(z)]

=Stabρ[Di f ]

= Inf
(ρ)
i [f ].

Combining with Pr[E1]+Pr[E2]+Pr[E3]+Pr[E4] = 1,
we have that

2 Pr[E1] + Pr[E3] + Pr[E4] = 1 + Inf
(ρ)
i [f ]

Dividing by 2 on both sides gives the desired gain.

Proof of Theorem 3

Proof. We know that Inf
(ρ)
i [f ] =

∑
S3i ρ

|S|−1f̂(S)2.
Consider any S ⊆ [n] such that |S| < t. We show
that f̂(S) = 0. For this let A = {x : f(x) = χS(x)}.
We show that |A| = |Ac| where Ac is the complement
of A. Indeed, consider any position i∗ /∈ S such that
Inf i∗ [f ] = 1. Such i∗ must exist by our assumption.
Thus the mapping x 7→ x⊕i

∗
is a mapping from A to

Ac that is one-to-one and onto. Therefore,

Inf
(ρ)
i [f ] =

∑
S3i:|S|≥t

ρ|S|−1f̂(S)2

≤ρt−1
∑
S3i

f̂(S)2

≤ρt−1 Inf i[f ].

The proof is complete.

Proof of Lemma 6

Proof. By viewing the first k players P1, . . . , Pk as
models, the last player Pk+1 as the adversary A , and
message strings in {0, 1}` as the model output in the
model composition, the proof is complete.
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